EXERCICE 1

On décide d'observer l'activité d'un individu sur une longue période. On note l'activité effectuée toutes les heures, et on remarque les choses suivantes :

- L'individu n'a que trois activités différentes : manger, dormir ou travailler ;
- A l'heure numérotée 0 où l'on commence l'expérience, l'individu mange ;
- S'il travaille à une certaine heure n, il mangera à l'heure suivante avec une probabilité $\frac{1}{2}$, et dormira avec une probabilité $\frac{1}{2}$;
- S'il mange à l'heure n, il travaillera à l'heure suivante avec une probabilité $\frac{1}{2}$, et dormira avec une probabilité $\frac{1}{2}$ également ;
- S'il dort à l'heure n, il travaillera à l'heure suivante avec une probabilité $\frac{1}{4}$, mangera avec une probabilité $\frac{1}{4}$, et continuera à dormir avec une probabilité $\frac{1}{2}$.

On note A_n l'événement « l'individu travaille à l'heure n » ; B_n l'événement : « l'individu mange à l'heure n » ; C_n l'événement : « l'individu dort à l'heure n » .

On note a_n , b_n et c_n les probabilités correspondantes.

1. Relations de récurrence

- a) Calculer les probabilités a_1 , b_1 , c_1 , a_2 , b_2 , c_2 , a_3 , b_3 et c_3 .
- **b**) Calculer la probabilité conditionnelle $P_{C_3}(A_2)$.
- c) A l'aide de la formule des probabilités totales, déterminer a_{n+1} , b_{n+1} et c_{n+1} en fonction de a_n , b_n et c_n .

2. Première méthode de calcul de probabilités : à l'aide de suites

- a) On pose $u_n = a_n + b_n$ et $v_n = a_n b_n$; montrer que les suites (u_n) et (v_n) sont des suites très particulières, et donner leurs expressions en fonction de n.
- **b**) En déduire a_n , b_n et c_n en fonction de n.
- c) Déterminer les limites des trois suites quand n tend vers $+\infty$.

3. Deuxième méthode : à l'aide des matrices

- a) On pose $X_n = \begin{pmatrix} c_n \\ a_n \\ b_n \end{pmatrix}$. Déterminer une matrice $A \in \mathcal{W}_3(\mathbb{R})$ telle que $X_{n+1} = AX_n$.
- **b**) Prouver rigoureusement que $\forall n \in \mathbb{N}, X_n = A^n X_0$.
- c) On pose $P = \begin{pmatrix} 1 & 0 & -1 \\ 1/2 & -1/2 & 1/2 \\ 1/2 & 1/2 & 1/2 \end{pmatrix}$. Montrer que P est inversible et calculer P^{-1} .
- **d**) Calculer la matrice $D = P^{-1}AP$ et en déduire A^n puis les expressions de a_n , b_n et c_n en fonction de n.

4. Troisième méthode : à l'aide d'applications linéaires

a) On considère l'application f définie sur \mathbb{R}^3 par $f(x; y; z) = \left(\frac{x + y + z}{2}; \frac{x + 2z}{4}; \frac{x + 2y}{4}\right)$.

Montrer que f est une application linéaire et déterminer son noyau et son image (on donnera une base de chaque).

b) Déterminer
$$F = \text{Ker}(f - Id_{\mathbb{R}^3})$$
 et $G = \text{Ker}(f + \frac{1}{2}Id_{\mathbb{R}^3})$.

T.S.V.P.

- c) Montrer que tout vecteur $u = (x; y; z) \in \mathbb{R}^3$ peut se décomposer de manière unique sous la forme $u = u_F + u_G + u_H$ avec $u_F \in F$, $u_G \in G$ et $u_H \in \text{Ker}(f)$.
- **d**) On note p, q, r les trois applications : $u \mapsto u_F$, $u \mapsto u_G$, $u \mapsto u_H$. Montrer que $p \circ p = p$, $q \circ q = q$ et $r \circ r = r$, et déterminer ce que valent $f \circ p$, $f \circ q$ et $f \circ r$ (on doit obtenir des expressions simples avec p, q et r).
- e) En déduire une expression de f^n à l'aide de p, q et r, puis donner la forme explicite de $f^n(x; y; z)$.
- f) Quel est le rapport avec le reste du problème ?

EXERCICE 2

Soit f l'application définie sur \mathbb{R} par : f(0) = 1 et $\forall x \in \mathbb{R}^*, f(x) = \frac{\operatorname{Arc} \tan x}{x}$

On note C_f la courbe de f dans un repère orthonormé du plan.

- **1.** a) Montrer que f est paire, et continue sur \mathbb{R} .
- **b**) Montrer que f est dérivable en 0; donner f'(0) ainsi que l'équation de la tangente \mathscr{T} à \mathscr{C}_f au point d'abscisse 0, et la position relative de \mathscr{C}_f et \mathscr{T} au voisinage de ce point.
 - c) Justifier que f est dérivable sur \mathbb{R}^* et donner f'(x) pour tout x de \mathbb{R}^* .
 - **d)** A l'aide d'une intégration par parties, montrer que : $\forall x \in \mathbb{R}, \int_0^x \frac{t^2}{\left(1+t^2\right)^2} dt = \frac{-1}{2}x^2 f'(x)$
 - e) En déduire les variations de f.
- **2.** Soit φ l'application définie sur \mathbb{R} par : $\varphi(0) = 1$ et $\forall x \in \mathbb{R}^*, \varphi(x) = \frac{1}{x} \int_0^x f(t) dt$
 - a) Montrer que φ est paire.
 - **b)** Montrer que Φ est continue sur \mathbb{R} .
 - c) Montrer que φ est dérivable sur \mathbb{R}^* et que : $\forall x \in \mathbb{R}^*, \varphi'(x) = \frac{1}{x} (f(x) \varphi(x))$
 - **d**) Montrer que φ est dérivable en 0 et déterminer $\varphi'(0)$.
 - e) Etudier les variations de φ .
 - **f)** Montrer qu'il existe une constante C telle que : $\forall t \ge 1, \ 0 \le f(t) \le \frac{C}{t}$ En déduire que $\lim_{x \to +\infty} \frac{1}{x} \int_{1}^{x} f(t) dt = 0$ puis que $\lim_{x \to +\infty} \varphi(x) = 0$.
- **3.** On considère l'équation (E) : $x^2y' + xy = Arc \tan x$
 - a) Résoudre (E) sur $]-\infty;0[$ et sur $]0;+\infty[$.
 - **b)** Montrer que φ est l'unique solution de (E) sur \mathbb{R} .