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Matrices et applications linéaires

On rappelle que la notation x signifie que la notion introduite est aux limites du programme et
ne doit pas étre une priorité dans votre apprentissage.

1 Matrice d’une application linéaire

Définitions
e Soient F' un K-espace vectoriel de dimension finie , B = (f1,- -, f.) une base de F et x
un vecteur de F', on définit le vecteur colonne des coordonnées de x dans la base By noté
x1
Matg, (z) par Matp, () = : ,oux =x1f1 4+ + Xy fn.
Ty
Remarques:

(a) Si F' = K" et Bp est la base canonique, on peut identifier x et Matg, (z), ce n’est plus
vrai dés que B est différente de la base canonique.

(b) On étend pour une famille de vecteurs par (y1,-- - ,¥p) par

Mat g, (Y1, 5 ¥p) = (Yij),

ouVj € [L,n], y;j=uwfi+ " +Ynjfa
La j-éme colonne est la décomposition sur la base By du vecteur y;.
Exemple: Soit la famille de vecteurs de Ky[X],

F=(L1+X,1+X+X* X+X?).
On a alors

Matgcf —

9

o O =

110
111
011
ot B. = (1, X, X?) est la base canonique de K,[X], mais aussi
—1

0
Matg, F = 0o 0 |,
1 1

o O =
O = O

ou By =(1,1+X,1+ X + X?).

e Soient F et F' deux K-espaces vectoriels de dimension finie admettant respectivement les
bases Bg = (e1,--- ,€,) et Bp = (f1,---, fn) et u une application de L(E, F'), on définit
la matrice de u dans les bases Bg et Br notée Mg, 5, (u) par

M = MBE,BF (u) = (mij>7
ou Vj € [1,p], u(e;) =majfi +mojfo+ -+ mpf = kajfk-
k=1
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Remarque: La j-éme colonne de la matrice m est formée du vecteur colonne des coordonnées
de u(ej) dans la base Bp.
Exemple: Soient £ = K3[X], F' = Ky[X] et 'application linéaire ¢ de E dans F' définie par
Y(P) = P(X + 1) — P(X), on calcule que dans les bases canoniques la matrice de 1 est

M =

o O O
o O =
SN =
W W

2 Liens opératoires entre les applications linéaires et les
matrices

Proposition 1. Soient E et F' deur K-espaces vectoriels de dimension finie admettant respec-
tivement les bases By = (e1,--- ,e,) et Bp = (f1,--+, fu), u une application de L(E, F) et x
un vecteur de E, alors on a

Matg, (u(z)) = Matg, 5. (u) - Matg, ().

Remarques:
1. On abrége la formule pour X vecteur colonne de x dans la base Bg, Y vecteur colonne
de y = u(x) dans la base Br et M matrice de u dans les bases B et B, par

Y =MX.

2. En dimension finie, calculer le noyau d’une application linéaire u se raméne donc & ré-
soudre le systéme linéaire associée a

MX =0,
ou M est la matrice de u dans les bases Bg et Br, les solutions X donneront les coordon-
nées des vecteurs du noyau dans la base Bg.

Proposition 2. Soient E et F' deur K-espaces vectoriels de dimension finie admettant respec-
tivement les bases Br = (e1,--- ,e,) et Bp = (f1,-- -, fn), Uapplication

Y L(EF) — M,,(K)
u —  Matp, 5, (u).

est isomorphisme d’espace vectoriel.

Remarques:
1. Il faut bien noter que les bases B et Br sont ici fixées.

2. Si E et F sont deux K-espaces vectoriels de dimension finie, étudier ’espace vectoriel
L(E, F) devient équivalent a étudier 'espace vectoriel M,, ,(K).

3. Quand E = K? et ' = K", par l'isomorphisme réciproque, on associe & une matrice
M € M,,,(K) l'application linéaire de K? dans K" : X — MX.

Corollaire 1. Soient E et F deux K-espaces vectoriels de dimension finie, alors on a le K-
espace vectoriel L(E, F') est de dimension finie et

dimL(E, F) = dim E dim F.
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Remarques:

1. On en déduit que si F un K-espace vectoriel de dimension finie , ’ensemble des endomor-
phismes de E est un K-espace vectoriel de dimension (dim E)>.

2. On en déduit que si EF un K-espace vectoriel de dimension finie , I’ensemble des formes
linéaires L(E, K) est un K-espace vectoriel de dimension dim E et donc que F et L(E, K)
sont isomorphes. (* Cette propriété n’est plus vraie, si E n’est pas de dimension finie)

Proposition 3. Soient E, F et G trois K-espaces vectoriels de dimension finie de bases respec-
tives Bg = (e1,- -+ ,ep), Br = (f1, -+, fa) €t Ba = (g1, , 94), u une application de L(E, F)
et v une application de L(F,G), alors on a

MatBE’BG(v ¢} u) = MatBF’BG(v) . MatBE’BF(u).

Remarque: On abrége la formule par si M et N sont les matrices de v et u dans des bases
adaptées alors la matrice de v o u dans les bases correspondante est

MN.

3 Matrices inversibles et isomorphismes

Proposition 4. Soient E et F deux K-espaces vectoriels de dimension finie admettant res-
pectivement les bases Bg = (e1,--- ,ep) et Bp = (f1,---, fn) et u une application de L(E, F),
alors il y a équivalence entre

(i) u un isomorphisme de K-espaces vectoriels .

(i) Matg, . (u) est inversible.

Remarque: En utilisant 'isomorphisme canonique entre L(K", K") et M,,(K), on démontre
en particulier que si une matrice carrée M admet une matrice N inverse a droite (ou & gauche),
elle est inversible et M~! = N.

Proposition 5 (Matrice de passage). Soient E un espace vectoriel de dimension n et Bp =

(€1, ,en), By = (€], -+ ,€l) deuz bases de E, on appelle matrice de passage de la base Bg a
la base By, la matrice de l'identité dans les bases By, et B . C’est-a-dire

P =Matg, 5,(Idg) = (pi;) € Ma(K),

ouVy € [1,n], e; = Zpl-jei. C’est la matrice dont la j-éme colonne est formée des composantes
i=1
de e;- dans la base Bg et on a

Pil = MatBE,%(IdE).

Remarque: La j-éme colonne de P est le vecteur colonne coordonnée de ¢} dans la base Bp.

1 1 -1
Exemple: Soient £ = K3, B, la base canonique de E et B; = 11,1 -1 1, 1
1 0 1
un autre base, la matrice de passage de B, a B est donc
1 1 -1
P= MatBth(IdE) = 1 -1 1 s
1 0 1

(exercice calculer Matg, g, (Idg)).



Proposition 6 (Changement de base). Soient E un espace vectoriel de dimension n, Bg =
(€1, ,en), By = (€}, -+ ,€,) deux bases de E et P la matrice passage de la base Bg a la base
By, alors si x est un vecteur de E de vecteurs colonnes coordonnées X dans Bg et X' dans B,
on a

X =PX'

Proposition 7. Soient E un K-espace vectoriel de dimension finie et B et B’ deux bases de

E, F un K-espace vectoriel de dimension finie et D et D' deux bases de F' et u une application
L(E,F), alors on a

Matg p(u) = (Matp pldp)™" (Matgp(u)) (Matg sldg)
= (Matply:[dp) (Mat&'D(u)) (MatB/,BIdE)

Corollaire 2 (cas d'une matrice d’endomorphisme). Soient E un K-espace vectoriel de dimen-
sion finie et B et B’ deux bases de E et u un endomorphisme de E, si M est la matrice de u
dans B, M’ la matrice de u dans B’ et P la matrice de passage de B a B', alors on a

M = PM'P™

Exemple d’application :

Calcul des puissances d’une matrice
1 -1 1
Soit la matrice M = | —1 1 -3 |, on considére 'endomorphisme ¢ de K? canonique-
0 0 -2
ment associée :
(a) Cherchons les valeurs A tel que I'application (¢ — AId) soit non injective :
On cherche donc les A tel que le systéme suivant posséde une infinité de solutions :

A+1z — y + 2 =0
—r + (1-XNy - 3z =0
(=A—2)z = 0
—
—r + (I=XNy — 3z = 0
I-14+NA=-N))y + A-1+Nz =0
(=A=2)z =0
ot -z + (1-Ny -— 3z =0
AA=2)y — Az =0

(=A—2)z = 0
Comme le systéme obtenu est triangulaire, il y a un infinité de solutions si et seulement
si la diagonale contient des zéros, c’est-a-dire si A € {0, -2, 2}.
(b) Pour A = 0, on obtient le systéme soit
-z + vy — 3z =0

0
22 = 0

d’otu Ker (¢) =K

O =



De la méme maniére, on obtient

-1 0
Ker (¢ —2Id) =K 1 et Ker (p+2ld)=K| 1
1
0
(c) On a 3 vecteurs non coplanaires donc B = , 1 et par construc-
1
tion
00 O
Matg (@)= 0 2 0
00 -2
(d) Calculons la puissance de M.
Si on pose
P = Mat&lgcld,
ou B, est la base canonique. On a
1 1 0
P=|(1 -11 et M = PMatg (p) P~
0 0 1
On a donc
M"™ = PMatg(p) P"*PMatg (¢) P~ --- PMatg (¢) P~
I3
= PMatg (p)" P!
0 0 0
= Pl 02" 0 P!
0 0 (=2)
On calcule
r 1 _1
pi_|1 2 2
— 1 2 2 2
0 0 1
En rassemblant, on obtient
2n71 _2n71 2n71
M" = _2n—1 2n—1 _2n—1 + (_2)n
0 0 (—2)"

Proposition 8. x Soient E un K-espace vectoriel de dimension finie et F' un sous-espace
vectoriel de F, il y a équivalence entre

(i) dmF =dimE —1
(ii) F admet une droite vectorielle comme supplémentaire dans E.
(iii) F est le noyau d’une forme linéaire non nulle.

On appelle hyperplan de E, un sous-espace vectoriel vérifiant une de ses propriétés.
Proposition 9. x Soient f et g deux formes linéaires sur E un K-espace vectoriel de dimension
finie, il y a équivalence entre

(i) [ et g sont deux formes linéaires proportionnelles.

(ii) Ker f = Kerg.



4 Rang d’une matrice

4.1 Définitions

Soit M une matrice de M,, ,(K) et ¢ 'application linéaire canoniquement associée, ¢’es-
a-dire
oy o KPP — K"
X — MX.

e Le noyau de M noté Ker M comme le noyau de ’application ¢,,.
e [’image de M noté Im M comme 'image de ’application ¢,,.

e Le rang de M noté rg M comme le rang de la famille des vecteurs colonnes de M.

4.2 Propriétés

Proposition 10. Soient E et F' deux espaces vectoriels de dimension finie p et n, Bg, Br des
bases de E et F' et f une application linéaire de E dans F', alors

rg (Matg, 5, f) = rg f.

Remarque: Ouf! Il y a cohérence des définitions, si ), est Iapplication linéaire canonique-
ment associée a une matrice M, on a rg M =r1g @yy.

Cette proposition permet de transférer les propriétés des applications en particulier, celles
découlant du théoréme de rang.

Proposition 11. Soient A € M,, ,(K) et B € M,, ,(K), alors
(i) rg (AB) < min(rg A,rg B)
(ii) sirg A =p (c’est-a-dire si 'application canoniquement associée a A est injective), alors
rg (AB) =rgB.
(iii) sirg B = p (c’est-a-dire si Uapplication canoniquement associée a B est surjective), alors
rg (AB) = rg A.

Corollaire 3. Multiplier une matrice par une matrice inversible conserve le rang. C’est-a-dire,
si Ae GL,(K), BeM,,(K) et C € GL,(K), alors

rg (ABC) =rg B.

Proposition 12. Soit A une matrice de M,,, et A" une matrice échelonnée par lignes (ou par
colonnes) de M, ,(K) a q pivots, alors

e Si existe P une matrice carré d’ordre p inversible tel que A = AP, alors rg A = q.

e Si existe Q une matrice carré d’ordre n inversible tel que A’ = QA, alors rg A = q.
Corollaire 4. Si A est une matrice de M., ,, on a
rg A=rg A,

en particulier le rang d’une matrice est aussi le rang de la famille composée de ses vecteurs
lignes.

Remarque: En particulier, pour calculer le rang d’une matrice, on peut faire des opérations
¢élémentaires sur les lignes comme sur les colonnes. Par contre, les opérations sur les colonnes
font perdre la possibilité de revenir au systéme linéaire homogéne associé.



