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Matrices et applications linéaires

On rappelle que la notation ⋆ signifie que la notion introduite est aux limites du programme et
ne doit pas être une priorité dans votre apprentissage.

1 Matrice d’une application linéaire

Définitions

• Soient F un K-espace vectoriel de dimension finie , BF = (f1, · · · , fn) une base de F et x
un vecteur de F , on définit le vecteur colonne des coordonnées de x dans la base BF noté

MatBF
(x) par MatBF

(x) =






x1
...
xn




 , où x = x1f1 + · · ·+ xnfn.

Remarques:

(a) Si F = K
n et BF est la base canonique, on peut identifier x et MatBF

(x), ce n’est plus
vrai dés que BF est différente de la base canonique.

(b) On étend pour une famille de vecteurs par (y1, · · · , yp) par

MatBF
(y1, · · · , yp) = (yij),

où ∀j ∈ [1, n], yj = y1jf1 + · · ·+ ynjfn.

La j-ème colonne est la décomposition sur la base BF du vecteur yj.

Exemple: Soit la famille de vecteurs de K2[X ],

F =
(
1, 1 +X, 1 +X +X2, X +X2

)
.

On a alors

MatBc
F =





1 1 1 0
0 1 1 1
0 0 1 1



 ,

où Bc = (1, X,X2) est la base canonique de K2[X ], mais aussi

MatB1
F =





1 0 0 −1
0 1 0 0
0 0 1 1



 ,

où B1 = (1, 1 +X, 1 +X +X2).

• Soient E et F deux K-espaces vectoriels de dimension finie admettant respectivement les
bases BE = (e1, · · · , ep) et BF = (f1, · · · , fn) et u une application de L(E, F ), on définit
la matrice de u dans les bases BE et BF notée MBE ,BF

(u) par

M = MBE ,BF
(u) = (mij),

où ∀j ∈ [1, p], u(ej) = m1jf1 +m2jf2 + · · ·+mnjfn =

n∑

k=1

mkjfk.
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Remarque: La j-ème colonne de la matrice m est formée du vecteur colonne des coordonnées
de u(ej) dans la base BF .

Exemple: Soient E = K3[X ], F = K2[X ] et l’application linéaire ψ de E dans F définie par
ψ(P ) = P (X + 1)− P (X), on calcule que dans les bases canoniques la matrice de ψ est

M =





0 1 1 1
0 0 2 3
0 0 0 3



 .

2 Liens opératoires entre les applications linéaires et les

matrices

Proposition 1. Soient E et F deux K-espaces vectoriels de dimension finie admettant respec-
tivement les bases BE = (e1, · · · , ep) et BF = (f1, · · · , fn), u une application de L(E, F ) et x
un vecteur de E, alors on a

MatBF
(u(x)) = MatBE ,BF

(u) · MatBE
(x).

Remarques:

1. On abrège la formule pour X vecteur colonne de x dans la base BE , Y vecteur colonne
de y = u(x) dans la base BF et M matrice de u dans les bases BE et BF , par

Y =MX.

2. En dimension finie, calculer le noyau d’une application linéaire u se ramène donc à ré-
soudre le système linéaire associée à

MX = 0,

où M est la matrice de u dans les bases BE et BF , les solutions X donneront les coordon-
nées des vecteurs du noyau dans la base BE .

Proposition 2. Soient E et F deux K-espaces vectoriels de dimension finie admettant respec-
tivement les bases BE = (e1, · · · , ep) et BF = (f1, · · · , fn), l’application

ψ : L(E, F ) −→ Mn,p(K)
u 7−→ MatBE ,BF

(u).

est isomorphisme d’espace vectoriel.

Remarques:

1. Il faut bien noter que les bases BE et BF sont ici fixées.

2. Si E et F sont deux K-espaces vectoriels de dimension finie, étudier l’espace vectoriel
L(E, F ) devient équivalent à étudier l’espace vectoriel Mn,p(K).

3. Quand E = K
p et F = K

n, par l’isomorphisme réciproque, on associe à une matrice
M ∈ Mn,p(K) l’application linéaire de K

p dans K
n : X 7→MX.

Corollaire 1. Soient E et F deux K-espaces vectoriels de dimension finie, alors on a le K-
espace vectoriel L(E, F ) est de dimension finie et

dimL(E, F ) = dimE dimF.
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Remarques:

1. On en déduit que si E un K-espace vectoriel de dimension finie , l’ensemble des endomor-
phismes de E est un K-espace vectoriel de dimension (dimE)2.

2. On en déduit que si E un K-espace vectoriel de dimension finie , l’ensemble des formes
linéaires L(E,K) est un K-espace vectoriel de dimension dimE et donc que E et L(E,K)
sont isomorphes. (⋆ Cette propriété n’est plus vraie, si E n’est pas de dimension finie)

Proposition 3. Soient E, F et G trois K-espaces vectoriels de dimension finie de bases respec-
tives BE = (e1, · · · , ep), BF = (f1, · · · , fn) et BG = (g1, · · · , gq), u une application de L(E, F )
et v une application de L(F,G), alors on a

MatBE ,BG
(v ◦ u) = MatBF ,BG

(v) · MatBE ,BF
(u).

Remarque: On abrège la formule par si M et N sont les matrices de v et u dans des bases
adaptées alors la matrice de v ◦ u dans les bases correspondante est

MN.

3 Matrices inversibles et isomorphismes

Proposition 4. Soient E et F deux K-espaces vectoriels de dimension finie admettant res-
pectivement les bases BE = (e1, · · · , ep) et BF = (f1, · · · , fn) et u une application de L(E, F ),
alors il y a équivalence entre

(i) u un isomorphisme de K-espaces vectoriels .

(ii) MatBE ,BF
(u) est inversible.

Remarque: En utilisant l’isomorphisme canonique entre L(Kn,Kn) et Mn(K), on démontre
en particulier que si une matrice carrée M admet une matrice N inverse à droite (ou à gauche),
elle est inversible et M−1 = N .

Proposition 5 (Matrice de passage). Soient E un espace vectoriel de dimension n et BE =
(e1, · · · , en), B

′

E = (e′
1
, · · · , e′n) deux bases de E, on appelle matrice de passage de la base BE à

la base B′

E, la matrice de l’identité dans les bases B′

E et BE . C’est-à-dire

P = MatB′

E
,BE

(IdE) = (pij) ∈ Mn(K),

où ∀j ∈ J1, nK, e′j =

n∑

i=1

pijei. C’est la matrice dont la j-ème colonne est formée des composantes

de e′j dans la base BE et on a

P−1 = MatBE ,B′

E
(IdE).

Remarque: La j-ème colonne de P est le vecteur colonne coordonnée de e′j dans la base BE.

Exemple: Soient E = K
3, Bc la base canonique de E et B1 =









1
1
1



 ,





1
−1
0



 ,





−1
1
1









un autre base, la matrice de passage de Bc à B1 est donc

P = MatB1,Bc
(IdE) =





1 1 −1
1 −1 1
1 0 1



 ,

(exercice calculer MatBc,B1
(IdE)).
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Proposition 6 (Changement de base). Soient E un espace vectoriel de dimension n, BE =
(e1, · · · , en), B

′

E = (e′
1
, · · · , e′n) deux bases de E et P la matrice passage de la base BE à la base

B′

E, alors si x est un vecteur de E de vecteurs colonnes coordonnées X dans BE et X ′ dans B′

E,
on a

X = PX ′.

Proposition 7. Soient E un K-espace vectoriel de dimension finie et B et B′ deux bases de
E, F un K-espace vectoriel de dimension finie et D et D′ deux bases de F et u une application
L(E, F ), alors on a

MatB′,D′(u) = (MatD′,DIdF )
−1 (MatB,D(u)) (MatB′,BIdE)

= (MatD,D′IdF ) (MatB,D(u)) (MatB′,BIdE)

Corollaire 2 (cas d’une matrice d’endomorphisme). Soient E un K-espace vectoriel de dimen-
sion finie et B et B′ deux bases de E et u un endomorphisme de E, si M est la matrice de u
dans B, M ′ la matrice de u dans B′ et P la matrice de passage de B à B′, alors on a

M = PM ′P−1.

Exemple d’application :

Calcul des puissances d’une matrice

Soit la matrice M =





1 −1 1
−1 1 −3
0 0 −2



, on considère l’endomorphisme ϕ de K
3 canonique-

ment associée :

(a) Cherchons les valeurs λ tel que l’application (ϕ− λId) soit non injective :

On cherche donc les λ tel que le système suivant possède une infinité de solutions :






(λ+ 1)x − y + z = 0
−x + (1− λ)y − 3z = 0

(−λ− 2)z = 0

⇐⇒






−x + (1− λ)y − 3z = 0
(1− (1 + λ)(1− λ))y + (1− (1 + λ)z = 0

(−λ− 2)z = 0

soit 





−x + (1− λ)y − 3z = 0
λ(λ− 2)y − λz = 0

(−λ− 2)z = 0

Comme le système obtenu est triangulaire, il y a un infinité de solutions si et seulement
si la diagonale contient des zéros, c’est-à-dire si λ ∈ {0,−2, 2}.

(b) Pour λ = 0, on obtient le système soit






−x + y − 3z = 0
0 = 0
2z = 0

,

d’où Ker (ϕ) = K





1
1
0



.

4



De la même manière, on obtient

Ker (ϕ− 2Id) = K





−1
1
0



 et Ker (ϕ+ 2Id) = K





0
1
1



 .

(c) On a 3 vecteurs non coplanaires donc B =









1
1
0



 ,





1
−1
0



 ,





0
1
1







 et par construc-

tion

MatB (ϕ) =





0 0 0
0 2 0
0 0 −2



 .

(d) Calculons la puissance de M .

Si on pose
P = MatB,Bc

Id,

où Bc est la base canonique. On a

P =





1 1 0
1 −1 1
0 0 1



 et M = PMatB (ϕ)P
−1.

On a donc

Mn = PMatB (ϕ)P
−1P

︸ ︷︷ ︸

I3

MatB (ϕ)P
−1 · · ·PMatB (ϕ)P

−1

= PMatB (ϕ)
n
P−1

= P





0 0 0
0 2n 0
0 0 (−2)n



P−1

On calcule

P−1 =





1

2

1

2
−1

2
1

2
−1

2

1

2

0 0 1





En rassemblant, on obtient

Mn =





2n−1 −2n−1 2n−1

−2n−1 2n−1 −2n−1 + (−2)n

0 0 (−2)n



 .

Proposition 8. ⋆ Soient E un K-espace vectoriel de dimension finie et F un sous-espace
vectoriel de E, il y a équivalence entre

(i) dimF = dimE − 1

(ii) F admet une droite vectorielle comme supplémentaire dans E.

(iii) F est le noyau d’une forme linéaire non nulle.

On appelle hyperplan de E, un sous-espace vectoriel vérifiant une de ses propriétés.

Proposition 9. ⋆ Soient f et g deux formes linéaires sur E un K-espace vectoriel de dimension
finie, il y a équivalence entre

(i) f et g sont deux formes linéaires proportionnelles.

(ii) Ker f = Ker g.
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4 Rang d’une matrice

4.1 Définitions

Soit M une matrice de Mn,p(K) et ϕM l’application linéaire canoniquement associée, c’es-
à-dire

ϕM : K
p −→ K

n

X 7−→ MX.

• Le noyau de M noté KerM comme le noyau de l’application ϕM .

• L’image de M noté ImM comme l’image de l’application ϕM .

• Le rang de M noté rgM comme le rang de la famille des vecteurs colonnes de M .

4.2 Propriétés

Proposition 10. Soient E et F deux espaces vectoriels de dimension finie p et n, BE, BF des
bases de E et F et f une application linéaire de E dans F , alors

rg (MatBE ,BF
f) = rg f.

Remarque: Ouf ! Il y a cohérence des définitions, si ϕM est l’application linéaire canonique-
ment associée à une matrice M , on a rgM = rgϕM .

Cette proposition permet de transférer les propriétés des applications en particulier, celles
découlant du théorème de rang.

Proposition 11. Soient A ∈ Mn,p(K) et B ∈ Mp,q(K), alors

(i) rg (AB) ≤ min(rgA, rgB)

(ii) si rgA = p (c’est-à-dire si l’application canoniquement associée à A est injective), alors

rg (AB) = rgB.

(iii) si rgB = p (c’est-à-dire si l’application canoniquement associée à B est surjective), alors

rg (AB) = rgA.

Corollaire 3. Multiplier une matrice par une matrice inversible conserve le rang. C’est-à-dire,
si A ∈ GLn(K), B ∈ Mn,p(K) et C ∈ GLp(K), alors

rg (ABC) = rgB.

Proposition 12. Soit A une matrice de Mn,p et A′ une matrice échelonnée par lignes (ou par
colonnes) de Mn,p(K) à q pivots, alors

• Si existe P une matrice carré d’ordre p inversible tel que A′ = AP , alors rgA = q.

• Si existe Q une matrice carré d’ordre n inversible tel que A′ = QA, alors rgA = q.

Corollaire 4. Si A est une matrice de Mn,p, on a

rgA = rg tA,

en particulier le rang d’une matrice est aussi le rang de la famille composée de ses vecteurs
lignes.

Remarque: En particulier, pour calculer le rang d’une matrice, on peut faire des opérations
élémentaires sur les lignes comme sur les colonnes. Par contre, les opérations sur les colonnes
font perdre la possibilité de revenir au système linéaire homogène associé.
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