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Majoration d’intégrales

Exercice 1 Soient (a, b) ∈ R2 avec a < b, que dire d’une fonction continue telle que

� b

a

f = (b− a) sup
[a,b]

|f |.

Exercice 2 Soient (a, b) ∈ R2 avec a < b et f une fonction continue sur [a, b] telle que

� b

a

|f | =
�����

� b

a

f

�����
. Montrer que f

garde un signe constant.

Exercice 3 Soit f : [0, 1] −→ R continue d’intégrale nulle sur [0, 1]. On pose m = inf
[0,1]

f et M = sup
[0,1]

f (justifier l’existence

de m et M). Que dire de la fonction g = (M − f) (f −m) ? En déduire l’inégalité

� 1

0

f2 ≤ −mM, puis que f s’annule au

moins une fois.

Exercice 4 Soient a < b deux réels, f : [a, b] −→ R (ou C) et g : [a, b] −→ R de classe C1 sur [a, b]. On suppose que
∀x ∈ [a, b], |f ′ (x)| ≤ g′ (x).

1. Que vaut

� b

a

f ′ (t) dt ? En déduire que |f (b)− f (a)| ≤ g (b)− g (a) .

2. Quel résultat retrouve-t-on si f est à valeurs réelles et si g′ = C est constante ?

Exercice 5 Soit f : [0, 1] −→ [0, 1] continue, non identiquement nulle et telle que

� 1

0

f =

� 1

0

f2. Montrer que ∀x ∈ [0, 1],
f (x) = 1.

Exercice 6 Soit f continue sur [a, b] avec a < b telle que

� b

a

f = 0. Montrer que f s’annule au moins une fois sur [a, b] :

1. En raisonnant par l’absurde.à l’aide du TVI.

2. En utilisant le théorème de Rolle appliqué à une autre fonction que f !

Application : En déduire que si f est continue vérifie

� 1

0

f =
1

2
, alors f admet un point fixe (i.e ∃a ∈ [0, 1] tel que

f (a) = a).

Exercice 7 Montrer que lim
n→+∞

� 1

0

tn arctan t√
1 + t2

dt = 0.

Exercice 8 On considère la suite u = (un)n∈N définie par ∀n ∈ N, un =
1

πn

� 1

0

(arcsinx)ndx, déterminer la limite de u.

Exercice 9 On définit pour n ≥ 1, un =
� π

0

sinx

n+ x
dx. Donner la limite, puis un équivalent de un.

Exercice 10 On considère la suite u = (un)n∈N définie par ∀n ∈ N, un =

� 1

0

xne−xdx, déterminer la limite de u.

Exercice 11 On considère la suite u = (un)n∈N définie par ∀n ∈ N, un =

� n

0

xne−nxdx, déterminer la limite de u.

Exercice 12 Soient u et v les suites définies par ∀n ∈ N, vn = n

� 1

0

xn−1

1 + xn
dx et un = n

� 1

0

xn

1 + xn
dx. Déterminer la limite

de vn,. En étudiant |vn − un| déduire celle de un.

Exercice 13 Etudier la convergence de la suite (In)n∈N définie par In =

� 1

0

xn

1 + x2
dx puis donner un équivalent simple de

Jn =

� 1

0

xn ln
�
1 + x2

�
dx.
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Exercice 14 On pose In =

� e

1

lnn xdx, montrer que la suite (In)n est décroissante. Etablir une relation de récurrence

vérifiée par cette suite. Montrer que (In)n∈N converge, préciser sa limite (on pourra poser u = lnx, puis majorer In). Que
vaut nIn + (In + In+1) ? En déduire un équivalent de In.

Exercice 15 Soit f de classe C1 sur [0, 1], on pose In =

� 1

0

tnf (t) dt. Déterminer la limite de In puis un équivalent.

Exercice 16 Soit p ∈ N∗, on définit Sn(p) =
n�

k=1

1
kp et In (p) =

� n

1

1

xp
dx.

1. Montrer, pour tout entier k ≥ 1, 1

(k + 1)p
≤
� k+1

k

1

xp
dx ≤ 1

kp
.

2. En déduire que pour tout entier n ≥ 2 :

Sn (p)− 1 ≤ In (p) ≤ Sn−1 (p)

puis que la suite (Sn (p))n≥1 converge si et seulement si p ≥ 2.

Exercice 17 Soit f une fonction de classe C1 sur [a, b] . avec a < b. Montrer que

� b

a

f(t) sin(λt)dt et

� b

a

f(t) cos(λt)dt

tendent vers 0 quand |λ| tend vers +∞. (lemme de Riemann-Lebesgue).

Exercice 18 Soit f ∈ C0 ([a, b] ,R) telle que ∀k ∈ {0, · · · , n− 1} ,
� b

a

tkf (t) = 0. Montrer que f s’annule au moins n fois

sur [a, b].

Exercice 19 Formules de la moyenne.

1. Soit f continue sur [a, b] avec a < b, montrer qu’il existe c ∈ [a, b] tel que
1

b− a

� b

a

f (t) dt = f (c).

2. Généralisation : Soient f et g continues sur [a, b] , a < b avec g positive sur [a, b], montrer qu’il existe c ∈ [a, b] tel que� b

a

f (t) g (t) dt = f (c)

� b

a

g (t) dt.

3. Application :

• Déterminer la limite lorsque u tend vers 0+ de

� 2u

u

cosx

x
dx.

• Si f est continue au voisinage de 0, déterminer lim
x→0

1

x2

� x

0

tf (t) dt.

• Si f est continue au voisinage de 0, montrer que lim
x→0+

� 2x

x

f (t)

t
dt = f (0) ln 2.

Exercice 20 On définit pour n ∈ N, un =

� π
4

0

tann(x)dx.

1. Calculer u0, u1 et simplifier pour n ∈ N la somme un + un+2.

2. Montrer que la suite est monotone et en déduire la limite de (un)n∈N.

3. On définit les suites (Sn)n∈N et (Tn)n∈N par Sn =
n�

k=0

(−1)k
k + 1

et Tn =
n�

k=0

(−1)k
2k + 1

. Exprimer Tn et
1

2
Sn à l’aide de la

suite u. En déduire lim
n→+∞

Tn et lim
n→+∞

Sn.

Remarque : on en déduit que π
4 = 1− 1

3 +
1
5 − 1

7 + · · · , cette formule est dite de Gregory (1638-1675), cependant on
la trouve déjà en 1410 en Inde dans un traité de Madhava.
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Exercice 21 Soit A (X) = X (1−X) , montrer que ∀x ∈ [0, 1] , 0 ≤ A (x) ≤ 1

4
.

1. Soit n ∈ N∗, montrer qu’il existe un unique polynôme Pn ∈ R [X] tel que A4n (X) =
�
1 +X2

�
Pn(X) + (−1)n4n.

(Penser en terme de reste d’une division euclidienne !).

2. On pose alors an =
(−1)n−1
4n−1

� 1

0

Pn(x)dx, montrer que |π − an| ≤
1

45n−1
.

Sommes de Riemann

Exercice 22 Déterminer les limites des suites (un)n∈N définies par

(1)
1

n

n−1�

k=0

sin

�
kπ

n

�
(2)

n−1�

k=0

n

n2 + k2
(3)

1

n2

n�

k=1

ke−k/n

(4)
n−1�

k=0

1√
n2 + k2

(5)
n�

k=0

n+ k

n2 + k2
(6)

1

n2

n�

k=1

�
k (n− k)

Exercice 23 Déterminer pour x �= 0, la limite de la suite (un)n∈N définie par un =
n�

k = 1

n

n2 + k2 x2
.

Exercice 24 Donner un équivalent des suites définies par

(1) un =
n�

k=1

√
k (2) un =

n�

k=1

kp où p ∈ N (3) un =
n�

k=0

1

k2 + (n− k)2

Exercice 25 Calculer la limite de

1√
n2 + 8n

+
1√

n2 + 16n
+

1√
n2 + 24n

+ · · ·+ 1√
9n2

Exercice 26 Calculer la limite de
1

n2

n	

k=1

�
n2 + k2

� 1
n

Exercice 27 Déterminer la limite de
n



(2n)!

n!nn
.

Exercice 28 Déterminer la limite de un =
2n�

k=1

k

n2 + k2
.

Exercice 29 Soit Sn =
n�

k=1

1

n+ k
et Un =

n�

k=1

(−1)k−1
k

1. Nature et limite de la suite (Sn)n .

2. Nature et limite de la suite (Un)n. (On pourra comparer U2n et Sn ).

Exercice 30 Soit

un =
n�

k=1

1
�
(k + n) (k + 1 + n)

déterminer la limite de (un)n∈N . (Indication : il y a un 1 de trop ! ).

Exercice 31 Soit f continue sur [0, 1] , déterminer la limite de
1

n

n�

k=0

(n− k)
� k+1

n

k
n

f (x) dx.

Exercice 32 Soit x ∈ R�{−1, 1} , on pose f (x) =

� 2π

0

ln
�
x2 − 2x cos t+ 1

�
dt.
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1. Déterminer Df.

2. Factoriser sur C le polynôme Xn − 1.

3. Calculer f (x) à l’aide de ses sommes de Riemann.

Exercice 33

1. Montrer que pour x ∈
�
0, π2

�
, on a x− x3

6
≤ sinx ≤ x

2. Déterminer la limite de la suite un =
n�

k=1

sin

�
k

n

�
sin

�
k

n2

�

Exercice 34 Déterminer la limite de un = n
−
1
2

�
1+

1
n

� �
112233 · · ·nn

� 1
n2

Exercice 35 On définit f et ϕ sur R2 [X] par f : P �−→ 1

2



P

�
X

2

�
+ P

�
X + 1

2

��
et ϕ : P �−→ P (1).

1. Vérifier que f ∈ L (R2 [X]) et que ϕ ∈ L (R2 [X] ,R).

2. Montrer que ∀P ∈ R2 [X], ∀n ∈ N∗, fn (P ) =
1

2n

2n−1�

k=0

P

�
X + k

2n

�
.

3. En déduire que ϕ (fn (P )) −−−−−→
n→+∞

� 1

0

P (t) dt.

Exercice 36 On désire déterminer la limite de

Sn =
n�

k=1

n− k
n2 + nk + 2011

1. S’agit-il d’une somme de Riemann ?

2. Simplifier
1

1 +
k

n

− 2011

n2
�
1 +

k

n

��
1 +

k

n
+
2011

n2

�

3. Conclure.

Exercice 37 Déterminer lim
n→∞

an

� 1

0

x2n sin
�πx
2

�
dx où an =

n�

k=1

sin

�
πk

2n

�
.

Théorème fondamental

Exercice 38 Pour x > 0, on définit f (x) =

� 1
x

x

ln t

1 + t2
dt, justifier que f est dérivable, déterminer f ′ puis f . Retrouver le

résultat avec le changement de variable u =
1

t
.

Exercice 39 On définit la fonction f par f (x) =

� 2x

x

dt√
1 + t4

.

1. Déterminer son ensemble de défintion, sa parité.

2. Déterminer ses variations et ses limites aux bords. Donner un équivalent de f en 0.

3. Montrer que f

�
1

2x

�
= f (x) et en déduire un équivalent de f en +∞.
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Exercice 40 Soit f continue sur [a, b] , montrer qu’il existe c ∈ ]a, b[ tel que

� c

a

f (t) dt = (b− c) f (c) . (utiliser g (x) =

(b− x)
� x

a

f (t) dt).

Exercice 41 Soit f dérivable sur R, on pose F (x) =

� x

0

cos (x− t) f (t) dt, montrer que F est dérivable deux fois sur R et

que F est solution de l’équation différentielle y′′ + y = f ′.

Application : Trouver les applications f continues sur R telles que ∀x ∈ R, f (x)− 2
� x

0

cos (x− t) f (t) dt = 1.

Exercice 42 Trouver les applications continues f telles que ∀x ∈ R, f (x)−
� x

0

tf (t) dt = 1.

Exercice 43 Soient f, g deux fonctions continues sur [a, b] à valeurs positives. On suppose f décroissante et g (x) ≤ 1 sur
[a, b].

1. Montrer que � b

a

f (t) g (t) dt ≤
� a+λ

a

f (t) dt où λ =

� b

a

g (t) dt

(On pourra poser F (x) =
� x
a
f (t) dt ,h (x) =

� x
a
f (t) g (t) dt, λ (x) =

� x
a
g (t) dt et k (x) =

� a+λ(x)
a

f (t) dt)

2. Application : f (x) = g (x) =
1

1 + x2
, a = 0, b = tan (u) où u ∈

�
0, π2

�
, en déduire que ∀u ∈

�
0, π2

�
,
sin (2u)

4
+
u

2
≤

arctan (u).

Exercice 44 Soit f ∈ C1 (R+,R) telle que f (0) = 0 et ∀x ∈ R+, 0 ≤ f ′ (x) ≤ 1.

Pour x ≥ 0, on pose g (x) =

�� x

0

f

�2
−
� x

0

f3

1. Etudier les variations de g, en déduire que ∀x ≥ 0,
�� x

0

f

�2
≥
� x

0

f3

2. Déterminer les applications f telles que g = 0.

Exercice 45 Soit f : [0,+∞[ −→ R de classe C1 sur [0,+∞[ telle que f (0) = 0.

1. On définit g sur ]0,+∞[ par g (x) = f (x) coth (x), montrer que l’on peut prolonger g en une fonction continue sur
[0,+∞[ (fonction notée encore g).

2. On définit F et G sur ]0,+∞[ par F (x) =

� x

0

�
f (t)2 + f ′ (t)2

�
dt − f (x)2 coth (x) et G (x) =

� x

0

(f ′ (t)− g (t))2 dt.
Justifier que F et et G sont dérivables sur ]0,+∞[ et déterminer leur dérivée.

3. Déterminer les limites de F et G en 0+, en déduire que

∀x > 0, f (x)2 ≤ th (x)×
� x

0

�
f (t)2 + f ′ (t)

2
�
dt

et qu’il y a égalité si et seulement s’il existe λ ∈ R tel que f = λ sh.

Formule de Taylor

Exercice 46 A l’aide de la formule de Taylor avec reste intégral, montrer que

∀x ≥ 0, shx ≥ x+
x3

6
et ∀x ∈ R, chx ≥ 1 + x2

2

∀x ∈ [0, π] x− x3

6
≤ sinx ≤ x− x3

6
+

x5

120
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