Ensembles

Exercice 1 Soit E un ensemble, et A, B deux parties de E, on désire montrer que si $A \cap B = A \cup B$ alors A = B.

- 1. Le prouver avec les fonctions indicatrices.
- 2. Le prouver par un raisonnement ensembliste.

Exercice 2 Soit E un ensemble, et A, B, C trois sous-ensembles de E

- 1. Montrer que $A \subset B \iff \mathbb{1}_A \leq \mathbb{1}_B$
- 2. On pose $X = A \cup (B \cap C)$ et $Y = (A \cup B) \cap C$, montrer que l'un des deux contient l'autre.
- 3. On suppose que $A \cap C \subset B \cap C$ et que $A \cup C \subset B \cup C$, montrer que $A \subset B$.
- 4. Reprendre les questions 2 et 3 par un raisonnement direct sur les ensembles.

Exercice 3 Soit E un ensemble, pour $(A, B) \in \mathcal{P}(E)^2$, on définit la différence symétrique $A\Delta B = (A \cup B) \setminus (A \cap B)$.

- 1. Calculer $A\Delta A$, $A\Delta E$ et $A\Delta \varnothing$.
- 2. Exprimer $\mathbb{I}_{A\Delta B}$ à l'aide de \mathbb{I}_A et de \mathbb{I}_B .
- 3. Montrer que si $(A, B, C) \in \mathcal{P}(E)^3$, on a $(A\Delta B) \Delta C = A\Delta (B\Delta C)$
- 4. Soit $\Phi: \left| \begin{array}{c} \mathcal{P}\left(E\right) \longrightarrow \mathcal{P}\left(E\right) \\ X \longmapsto X\Delta A \end{array} \right|$, calculer $\Phi \circ \Phi\left(X\right)$, puis résoudre l'équation $X\Delta A = B$.

Exercice 4 Soit E un ensemble, et A, B deux parties de E, résoudre les équations d'inconnue $X \in \mathcal{P}(E)$

①
$$X \cup A = B$$
. ② $X \cap A = B$.

Exercice 5 Soit $(n,p) \in \mathbb{N}^2$ avec $p \ge 1$, on note $A_p = \{k \in \mathbb{N}, k \le n \text{ et } p \text{ divise } k\}$ l'ensemble des entiers inférieurs à n et divisible par p. Montrer que $\#A_p = \left\lfloor \frac{n}{p} \right\rfloor$. Combien a-t-il d'entiers inférieurs à n et divisible par n et n et divisible par n et n

Récurrence

Exercice 6 Montrer que pour tout entier n l'entier naturel $n(n^2 + 5)$ est divisible par 6.

Exercice 7 Soit $(s_n)_{n\geq 1}$ la suite définie par $s_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$. Montrer que $s_n > 2\sqrt{n+1} - 2$. En déduire la limite de s_n quand n tend vers $+\infty$.

Exercice 8 Montrer que pour tout $n \in \mathbb{N}^*$, on a $\prod_{k=1}^n (2k)! \ge ((n+1)!)^n$

Exercice 9 Déterminer le terme général de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=0,\ u_1=1,\ u_2=4$ et $\forall n\in\mathbb{N},\ u_{n+3}=3u_{n+2}-3u_{n+1}+u_n$.

Exercice 10 Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par

$$u_0 = 1$$
, $u_1 = 10$ et $\forall n \ge 0$, $u_{n+2} = 5u_{n+1} - 4u_n + 3n + 8$

Montrer que $\forall n \in \mathbb{N}, \ u_n = 4^{n+1} - \frac{(n+3)(n+2)}{2}$

Exercice 11 On définit la suite $(u_n)_{n\in\mathbb{N}}$ par

$$u_0 = 1 \ et \ u_{n+1} = \sum_{k=0}^{n} u_k$$

Montrer par récurrence forte que pour tout $n \ge 1$, $u_n = 2^{n-1}$.

Exercice 12 Montrer que si $n \in \mathbb{N}$ est non nul, $\sqrt{\frac{3}{4n+3}} \le \prod_{k=1}^{n} \frac{4k+1}{4k+3} \le \sqrt{\frac{5}{4n+5}}$.

Exercice 13 Montrer que, $\forall p \in \mathbb{N}, \forall n \in \mathbb{N}, \sum_{k=0}^{n} \binom{k}{p} = \binom{n+1}{p+1}$ (Faire une récurrence sur n, à p fixé).

Exercice 14 Soit $f: \mathbb{N}^2 \to \mathbb{N}^*$ définie par $f(n,p) = 2^n (2p+1)$, montrer par récurrence sur q que l'équation f(n,p) = q admet toujours une solution. Prouver que f est une bijection.

Exercice 15 Soient $(a_n)_{n\in\mathbb{N}^*}$ une suite d'entiers naturels non nuls telle que

$$\forall n \in \mathbb{N}^*, \ \sum_{k=1}^n a_k^3 = \left(\sum_{k=1}^n a_k\right)^2$$

Que peut-on dire des a_n ?

Exercice 16 On définit pour $(n,m) \in \mathbb{N}^2$, $u(n,m) = \frac{(2m)!(2n)!}{n!m!(m+n)!}$, montrer que si $m \ge 1$,

$$u(n,m) + u(n+1,m-1) = 4u(n,m-1)$$

En déduire que $u(m,n) \in \mathbb{N}$.

Exercice 17 Soit $f: \mathbb{N} \to \mathbb{N}$ strictement croissante telle que f(2) = 2 et $\forall (p,q) \in \mathbb{N}^2$, f(pq) = f(p) f(q). Montrer que $\forall n \in \mathbb{N}, f(n) = n$.

Calcul algèbrique

Exercise 18 Calculer
$$\sum_{k=1}^{n} k$$
, $\sum_{i=1}^{n} k$, $\sum_{k=1}^{n} i$, $\sum_{k=1}^{n} n$ et $\prod_{k=1}^{n} k$, $\prod_{i=1}^{n} k$, $\prod_{k=1}^{n} i$, $\prod_{k=1}^{n} n$.

Exercice 19 Donner une autre expression des termes suivants : $\sum_{k=1}^{n} \alpha a_k$, $\sum_{k=1}^{n} (\alpha + a_k)$, $\prod_{k=1}^{n} \alpha a_k$, $\prod_{k=1}^{n} a_k^{\alpha}$.

Exercice 20 Déterminer a et b dans \mathbb{Z} tels que $\frac{1}{n(n+1)} = \frac{a}{n} + \frac{b}{n+1}$, en déduire $\sum_{k=1}^{n} \frac{1}{k(k+1)}$.

S'inspirer de la méthode pour en déduire la valeur de $\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}$.

Exercice 21 En remarquant que $k \times k! = (k+1-1) \times k!$, calculer $\sum_{k=1}^{n} k \times k!$

Exercice 23 Soient $(p,n) \in \mathbb{N}^2$, On pose $A = 2 \times 4 \times \cdots \times 2n$ et $B = 1 \times 3 \times 5 \times \cdots \times (2n+1)$. Simplifier $A \times B$, puis $A \in \mathbb{R}$.

Exercice 24 On définit pour $n \in \mathbb{N}^*$ et $p \in \mathbb{N}$, $S_{n,p} = \sum_{k=1}^{n} k^p$. On rappelle que $S_{n,1} = \frac{n(n+1)}{2}$, $S_{n,2} = \frac{n(n+1)(2n+1)}{6}$

et $S_{n,3} = \frac{n^2 (n+1)^2}{4}$. Calculer

①
$$\sum_{k=1}^{n} k (k+1)$$
 ② $\sum_{k=1}^{n} k^{2} (n+1-k)$ ③ $\sum_{1 \leq i,j \leq n} ij$

Exercice 25 *Montrer que* $(n!)^2 = \prod_{k=1}^{n} k(n-k+1)$.

Exercice 26 Calculer $\prod_{k=1}^{n-1} \left(1 + \frac{\binom{n}{k}}{\binom{n}{k+1}}\right)$.

Exercice 27 Calculer $\sum_{0 \le p \le q \le n} 2^p$ de deux manières, en déduire la valeur de $\sum_{p=0}^n p2^p$.

Exercice 28 Calculer (pour n et m entiers)

Exercice 29 Calculer $\sum_{k=1}^{n} \sum_{i=k}^{n} \frac{1}{i}$.

Arithmétique élémentaire

Exercice 30 Montrer que $\forall n \in \mathbb{N}, n^2 \text{ divise } (n+1)^n - 1$

Exercice 31 Déterminer les entiers $n \in \mathbb{Z}$ tels que $\frac{2n^2 - 2n + 4}{n + 1} \in \mathbb{Z}$.

Exercice 32 Soient a et b dans \mathbb{N} , on note q et r le quotient et le reste de la division euclidienne de (a-1) par b. Pour $n \in \mathbb{N}$, effectuer la division euclidienne de $ab^n - 1$ par b^{n+1} .

Exercice 33 Soient a_1, \dots, a_{2014} des entiers, montrer que l'on peut en trouver n consécutifs dont la somme est divisible par 2014. On pourra poser $S_n = \sum_{k=1}^n a_k$ et regarder q_n le reste de la division euclidienne de S_n par 2014.

Exercice 34 Montrer qu'il n'existe aucun nombre premier entre n! + 2 et n! + n.

Exercice 35 Quel est le plus petit entier ayant 15 diviseurs distincts.

Exercice 36 Soit $\mathcal{P} = \{p_1, p_2, \dots, p_n, \dots\}$ l'ensemble des nombres premiers rangés par ordre croissant (ainsi $p_1 = 2, p_2 = 3, p_3 = 5, \dots$).

- 1. Montrer que $p_{k+1} \le 1 + \prod_{i=1}^{k} p_i$.
- 2. En déduire que $p_n \leq 2^{2^n}$.

Exercice 37 On se propose de montrer que si $a^n - 1$ est premier alors n est premier et a = 2.

- 1. Soit $2 \le p < q$ deux entiers, montrer que $2^{pq} 1$ n'est pas premier.
- 2. Montrer que si 2^n-1 est premier alors n est premier (la réciproque est fausse comme le prouve $2^{11}-1=23\times 89$).
- 3. Montrer que si a > 2 et $n \ge 2$ alors $a^n 1$ n'est pas premier.

Exercice 38 Une puissance de 2 augmentée d'une unité peut-elle être un cube ?

Dénombrement

Exercice 39 Une urne contient 10 boules numérotées, combien y a-t-il de tirages si

1. On tire trois boules successivement avec remise.

- 2. On tire trois boules successivement sans remise.
- 3. On tire trois boules ensembles.

Exercice 40 Avec les 26 lettres de l'alphabet combien peut-on former

- 1. De mots ayant cinq lettres.
- 2. De mots ayant cinq lettres distinctes.
- 3. De mots de cinq lettres ayant quatre lettres distinctes.

Exercice 41 Combien y a-t-il d'anagrammes de "stylographique", et de "barbapapa" ?

Exercice 42 On tire simultanément 5 cartes d'un jeu de 32 cartes. Combien de tirages différents peut-on obtenir

- 1. Sans imposer de contraintes.
- 2. Contenant 5 carreaux ou 5 piques.
- 3. Contenant 2 carreaux et 3 piques.
- 4. Contenant cinq couleurs différentes.
- 5. Contenant au moins un Roi.
- 6. Contenant 2 Rois et 3 piques.
- 7. Contenant un carré.

Exercice 43 On lance trois dés à six faces numérotés et discernable par leur couleur.

- 1. Combien y a-t-il de tirages différents?
- 2. Combien y a-t-il de tirages contenant au moins un 6 ?
- 3. Combien y a-t-il de tirages contenant deux et seulement deux faces ayant le même chiffre.
- 4. Combien y a-t-il de tirages tels que la somme des chiffres des trois dés soit paire.
- 5. Combien y a-t-il de tirages contenant deux faces ayant le même chiffre et dont la somme des chiffres des trois dés est paire ?

Exercice 44 Soient $(m, n, p) \in \mathbb{N}^3$, on considère deux ensembles A et B disjoints et de cardinaux m et n respectivement. En dénombrant de deux façons différentes le nombre de parties à p éléments de $A \cup B$, montrer que

$$\sum_{k=0}^{p} \binom{n}{k} \binom{m}{p-k} = \binom{m+n}{p}$$

Exercice 45 Soit E un ensemble à n éléments, déterminer le nombre de couples (A,B) de parties distinctes telles que $A \cap B = \emptyset$.

Exercice 46 Calculer
$$\sum_{A \subset E} \#A$$
, $\sum_{\substack{A \subset E \\ B \subset E}} \#(A \cap B)$, $\sum_{\substack{A \subset E \\ B \subset E}} \#(A \cup B)$ où E est fini de cardinal n .