	<u>تمرين 1</u> → انتبه 🔷 ← تعليق		
معطیات :	1- لنحسب <i>BD</i> و <i>CH</i> و BG		
AE = 4 g $AD = 6$ g $AB = 3BC$	لدينا ABD مثلث قائم الزاوية في A ، إذن حسب مبرهنة $BD^2 = AB^2 + AD^2$		
A	$BD^2 = 3^2 + 6^2$		
F T	$BD^2 = 9 + 36$ فيتاغورس المباشرة : $BD^2 = 45$		
G	$BD = 45$ $BD = \sqrt{45}$		
E H			
	لدينا DCH مثلث قائم الزاوية في D ، إذن حسب مبرهنة		
$BG^2 = BC^2 + CG^2$	$CH^2 = DC^2 + DH^2$		
$BG^2 = 6^2 + 4^2$	$CH^2 = 3^2 + 4^2$		
$BG^2 = 36 + 16$: فيتاغورس المباشرة فيتاغورس المباشرة :	$CH^2 = 9 + 16$ فيتاغورس المباشرة : $CH^2 = 9 + 16$		
$BG^2 = 52$ $BG = \sqrt{52}$	$CH^2 = 25$ CH = 5		
$BG = \sqrt{52}$	CII – 5		
ب- لنحسب <i>DF</i>	ig(BFig)ot(BDig)أ- لنبين أن -2		
لدينا حسب السؤال السابق <i>BDF</i> مثلث قائم الزاوية في	$(BF)\!\perp\!(AB)$: لدينا $ABFE$ مستطيل ، إذن		
: إذن حسب مبرهنة فيتاغورس المباشرة B ، إذن حسب $DF^2 = BF^2 + BD^2$	و لدينا $BCGF$ مستطيل ، إذن : $(BC) \pm (BC)$		
$DF^2 = 4^2 + (\sqrt{45})^2$	و بما أن (AB) و (BC) متقاطعان و يحددان المستوى (ABC) ، فإن : $(ABCD)$ ، فإن : $(ABCD)$		
$DF^2 = 16 + 45$	$\left(ABCD ight)$ وَحيث أنَّ $\left(BD ight)$ ضمن المستوى $\left(ABCD ight)$		
$DF^2 = 61$	ig(BFig)ot(BDig):فإن $ig(BFig)$		
$DF = \sqrt{61}$			
4- لنحسب حجم الهرم <i>CEFGH</i>	3- لنحسب حجم <i>ABCDEFGH</i>		
CEFGH هرم قاعدته هي المستطيل EFGH و ارتفاعه CG ، إذن حجمه :	: متوازي مستطيلات قائم، حجمه ABCDEFGH متوازي م $V=AB imes AD imes AE$		
$V' = \frac{1}{3} \times CG \times S_{EFGH}$	$V = 3 \times 6 \times 4$		
	V = 72		
$V' = \frac{1}{3} \times CG \times (EF \times EH)$			
$V' = \frac{1}{3} \times 4 \times (3 \times 6)$			
$V' = \frac{72}{3} = 24$			
ً ♦→لاحظ أن الزوايا القائمة الحقيقية ليست ظاهرة في الثمثيل ، هذا يعني أنه يتوجب استحضار الشكل الحقيقي لمتوازي لمستطيلات القائم للعثور على هذه الزوايا.			

	<u>تمرين 2</u> → انتبه 📀 → تعليق	
معطیات :	AH و AI و AT النحسب \dot{AC}	
AB = AD = AE = a = 4	لدينا ADC مثلث قائم الزاوية في D ، إذن حسب مبرهنة ADC	
B	$AC^2 = AD^2 + DC^2$	
	$AC^2 = 4^2 + 4^2$	
A	$AC^2 = 16 + 16$: فيتاغورس المباشرة	
	$AC^2 = 32$	
	$AC = \sqrt{32}$	
F	$AI = rac{AC}{2} = rac{\sqrt{32}}{2}$: و بما أن I منتصف $[AC]$ فإن	
	لدينا ADH مثلث قائم الزاوية في D ، إذن حسب مبرهنة ADH $AH^2 = AD^2 + DH^2$	
E H	$AH^2 = 4^2 + 4^2$	
$AH = \sqrt{32} = \sqrt{16 \times 2} = 4\sqrt{2}$ يستحسن تبسيط \leftarrow	$AH^2 = 16 + 16$: فيتاغورس المباشـرة	
مما يسمح أيضا بتبسيط $AI = rac{4\sqrt{2}}{2} = 2\sqrt{2}$ ، لكنه ليس	$AH^{2} = 32$	
الله يستنق ايك بيبسيط 2 2 – 2 – 11 ، فقه فيس إلزاميا.	$AH = \sqrt{32}$	
ېرمىي. ب- احسب <i>IH</i>	2- أ- لنبين أن (<i>DH</i>) (<i>ID</i>)	
لدينا حسب السؤال السابق <i>IDH</i> مثلث قائم الزاوية في		
: إذن حسب مبرهنة فيتاغورس المباشرة $IH^2=ID^2+DH^2$	$\left(DH ight) ot\left(AD ight) :$ لدينا $ADHE$ مستطيل ، إذن	
	$ig(DHig)\!\perp\!ig(DCig)$: و لدينا $DCGH$ مستطيل ، إذن $DCGH$	
$IH^2 = \left(\frac{\sqrt{32}}{2}\right)^2 + 4^2$	و بما أن $ig(ADig)$ و $ig(DCig)$ متقاطعان و يحددان المستوى	
$IH^2 = \frac{32}{4} + 16$	ig(DHig) ot ig(ABCDig) ، فإن : $ig(ABCDig)$	
$H^{2} = 8 + 16$	ig(ABCDig)و حيث أن $ig(IDig)$ ضمن المستوى	
$IH^{2} = 8 + 16$ $IH^{2} = 24$	$ig(DH)\!\perp\!ig(IDig)$: فإن	
$III = \sqrt{24}$ $IH = \sqrt{24}$		
(<i>AI</i>) (<i>FBDH</i>) : لنبين أن -4	-3 لبين أن (<i>AI</i>)⊥(<i>IH</i>)	
	$AI^{2} + IH^{2} = \left(\frac{\sqrt{32}}{2}\right)^{2} + \left(\sqrt{24}\right)^{2}$	
لدينا <i>ABCD</i> مربع ، إذن قطراه متعامدان ، منه	(2)	
: و لدينا حسب السؤال السابق ، $(AI) ot (BD)$	$AH^{2} = (\sqrt{32})^{2}$ $AH^{2} = 32$ $AI^{2} + IH^{2} = \frac{32}{4} + 24$	
و بما أن (BD) و $(AI) \perp (IH)$ ، و بما أن (BD) ، و المتقاطعان و $(AI) \perp (IH)$	$AII^{2} = 52$ $AII^{2} + IH^{2} = 8 + 24$	
$(AI)\!\perp\!(FBDH)$: المستوى $(FBDH)$ ، فإن $(FBDH)$	$AI^2 + IH^2 = 32$	
	إذن : $H^2=AH^2=AH^2$ ، بالتالي حسب مبرهنة $AI^2+IH^2=AH^2$ فيتاغورس العكسية فإن المثلث HI قائم الزاوية في	
	النقطة I ، أي $(IH) \perp (IH)$ قائم الزاوية في $(AI) \perp (IH)$	
مالمكعب V_1 حجم المكعب -5		
$V_1 = a^2 = 4 \times 4 \times 4 = 64$		

	<u>تمرين 2</u> → انتبه 🔷 ← تعليق		
مستعمير باعث الأوجه $AIDH$ بطريقتين -6- لنحسب V_2 حجم رباعث الأوجه IDH بطريقتين			
الطريقة الثانية	الطريقة الأولى		
مرما $AIDH$ بما أن $AIDH \left(FBDH ight)$ ، فإنه يمكن اعتبار	ما أن $AIDH \left(ABCD ight)$ ، فإنه يمكن اعتبار $AIDH$ هرما		
قاعدته المثلث <i>IDH</i> و ارتفاعه AI ، منه :	قاعدته المثلث AID و ارتفاعه DH ، منه :		
$V_2 = \frac{1}{3} \times AI \times S_{IDH}$	$V_2 = \frac{1}{3} \times DH \times S_{AID}$		
$V_2 = \frac{1}{3} \times AI \times \frac{ID \times DH}{2}$	$V_2 = \frac{1}{3} \times DH \times \frac{AI \times ID}{2}$		
$V_2 = \frac{1}{3} \times \frac{\sqrt{32}}{2} \times \frac{\frac{\sqrt{32}}{2} \times 4}{2}$	$V_{2} = \frac{1}{3} \times 4 \times \frac{\frac{\sqrt{32}}{2} \times \frac{\sqrt{32}}{2}}{2}$		
$V_2 = \frac{\sqrt{32}}{6} \times \frac{2\sqrt{32}}{2} = \frac{\sqrt{32} \times \sqrt{32}}{6} = \frac{32}{6} = \frac{16}{3}$	$V_2 = \frac{4}{3} \times \frac{\frac{32}{4}}{2} = \frac{4 \times 8}{6} = \frac{32}{6} = \frac{16}{3}$		
♦ ➡ باستعمال التبسيط المشار إليه سابقا يمكن الحصول على النتيجة ابسهولة			
$V_1 = 12V_2$: تحقق أن -7			
$V_1 = 12V_2$; الدينا ، $12V_2 = 12 \times \frac{16}{3} = \frac{192}{3} = 64$; الدينا			

	<u>تمرين 3</u> → انتبه 🔷 → تعليق
معطيات :	DI - أ- بين أن $DI \left(BC ight) \pm \left(DI ight)$ ثم احسب -1
AB = BC = AC = AD = DC = DB = 4	لدينا DBC مثلث متساوي الأضلاع و I منتصف $[BC]$ ، إذن
BC] منتصف I	$(DI) \perp (BC)$ يمثل ارتفاعا للمثلث DBC ، منه (DI)
	لدينا DIC مثلث قائم الزاوية في I ، إذن حسب مبرهنة DIC
	$DC^2 = CI^2 + DI^2$
	$4^2 = 2^2 + DI^2$
	$16 = 4 + DI^2$
	فيتاغورس المباشرة : $16 - 4 = DI^2$
B	$12 = DI^2$
C	$\underline{DI = \sqrt{12}}$
	ب- احسب AID ثم حدد طبيعة المثلث AID
$AC^2 = CI^2 + AI^2$	
$4^2 = 2^2 + AI^2$	، $\left[BC ight]$ لدينا ABC مثلث متساوي الأضلاع و I منتصف
منه AID مثلث $AI = DI$ إذن $16 = 4 + AI^2$	$ig(AI)\!\perp\!ig(BC)$ إذن $ig(AI)\!\perp\!ig(BC)$ يمثل ارتفاعا للمثلث ABC ، منه $ig(AI)$
I متساوي الساقين في النقطة $16-4=$ AI^2	لدينا DIC مثلث قائم الزاوية في $\ I$ ، إذن حسب مبرهنة
$12 = AI^2$	فيتاغورس المباشرة :
$AI = \sqrt{12}$	

<u>تمرين 3</u> ∕ <mark>گ</mark> ِ←انتبه ♦ ← تعليق				
	3- أ- لنحسب <i>IJ</i>	$\left(BC ight)\!\perp\!\left(ADI ight)$ -2 - بين أن		
A K	لدينا حسب السؤال1-ب AID مثلث J متساوي الساقين في النقطة I ، و منتصف $[AD]$ ، إذن : (IJ) يمثل ارتفاعا $(IJ) \perp (AD)$ منه ADI يمثل ارتفاعا $IL (AD)$ ، منه $IJ \perp (AD)$ مثلث قائم الزاوية في IJ بدينا IIJ مثلث قائم الزاوية في IIJ مثلث قائم الزاوية في IIJ $(\sqrt{12})^2 = AJ^2 + IJ^2$ $(\sqrt{12})^2 = 2^2 + IJ^2$ $12 = 4 + IJ^2$ $12 = 4 + IJ^2$ $12 - 4 = IJ^2$ $8 = IJ^2$	لدينا حسب ما سبق $(BC) \pm (ID)$ و $(BC) \pm (IA)$ و (BC) $\pm (IA)$ و (IA) و (ID) أو (ID) يحددان المستوى (ADI) متقاطعان و $(BC) \pm (ADI)$ AID فإن : $(BC) \pm (ADI)$ $S_{AID} = \frac{AD \times IJ}{2}$ $S_{AID} = \frac{4 \times \sqrt{8}}{2}$		
	$IJ = \sqrt{8}$	$S_{AID} = 2\sqrt{8}$		
$ABCD$ -لنحسب حجم رباعي الأوجه -5 $V = 2V_1$ $V = \frac{16\sqrt{2}}{3}$	$V_{1} = \frac{1}{3} \times CI \times S_{AID}$ $V_{1} = \frac{1}{3} \times 2 \times 2\sqrt{8} = \frac{4\sqrt{8}}{3} = \frac{8\sqrt{2}}{3}$	4-لنحسب حجم رباعي الأوجه $CAIDلدينا حسب السؤال 2 :(BC) \perp (ADI) ، إذن : يمكن اعتبارCAID$ هرما قاعدته المثلث AID و ارتفاعه CI ، منه :		
$V = \frac{\sqrt{2}}{12} a^3$ ، وان حجمه هو a ، a هو a ، فإن حجمه هو: $V = \frac{\sqrt{2}}{12} a^3$ مستعينا بخطوات التمرين ،يمكنك أن تبرهن أنه إذا كان طول حرف رباعي أوجه منتظم $ABCD$ هو a ، فإن حجمه هو: $V = \frac{\sqrt{2}}{12}$				

$$\begin{array}{c|c} \hline \mathbf{C} & \mathbf{C} & \mathbf{C} \\ \hline \mathbf{C} & \mathbf{C} \\ \hline \mathbf{C} \\ \mathbf$$

