لمأح صليتكم ورحمة الماته وبركاة

الجذع المشترك الفيزياء جميع الشعب

الصفحة:

ميزلات بعض ثنائيات القطب غير النشيطة Caractéristiques de quelques dipôles passifs

الجزء الثاني:

الكهرباء

المحور الأول

الوحدة 4

* نسمى ثنائى قطب كل مركبة كهربائية (أو تجميع لمركبات كهربائية) ذات مربطين أو قطبين .

بين U_{AR} بين القطب غير النشيط هو مركبة كهربائية لا تحدث تيارا كهربائيا من تلقاء نفسها ، أي التوتر U_{AR} بين

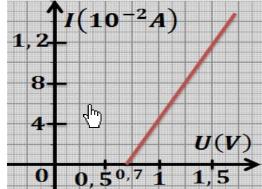
 $U_{AB}=\mathbf{0}$ و $U_{AB}=\mathbf{0}$ مربطيها منعدم عندما لا يمر فيها تيار كهربائي

 U_{AB} بدلالة شدة التيار الكهربائي U_{AB} بين مربطي ثنائي قطب (AB) بدلالة شدة التيار الكهربائي \star $(oldsymbol{U}_{AB}=f(oldsymbol{I}_{AB})$; $oldsymbol{I}_{AB}=f(oldsymbol{U}_{AB})$) المار فيه أو العكس

 * المصباح ثنائي قطب غير نشيط، مميزته غير خطية وتماثلية (أي سلوكه مستقل عن منحى التيار الذي يمر فيه). * الصمام التنائي تنائى قطب غير نشيط، مميزته غير خطية و غير تماثلية و لا يسمح بمرور التيار الكهربائي إلا في المنحى المباشر و في حالة $U_{AB} > U_S$. القيمة الدنيا للتوتر $U_{AB} = U_A$ التي تبقى دونها شدة التيار منعدمة عتبة $U_{ ext{c}}$ التوتر للصمام الثنائي $U_{ ext{c}}$

* الصمام الثنائي المتألق كهربائيا ثنائي قطب غير نشيط، مميزته غير خطية و غير تماثلية شبيهة بمميزة الصمام . $U_{AB} > U_{S}$ الثنائي ذي وصلة. حيث لا يبعث (DEL) ضوء إلا إذا كان مركبا في المنحى المار ويكون التوتر

* الصمام الثنائي زينر ثنائي قطب غير نشيط، مميزته غير خطية و غير تماثلية، حيث يكون:


. $U_{BA} \geq U_Z$ و مارا في حالة : $U_{AB} > U_S$ و مارا في حالة : $-U_Z < U_{AB} < U_S$ * المقومات الحرارية ثنائي قطب غير نشيط، مميزته خطية و تماثلية ، يتصرف كموصل أومى تتغير مقاومته بتغير درجة حرارته

* المقومات الضوئية ثنائي قطب غير نشيط ، مميزته خطية و تماثلية ، يتصرف كموصل أومي تتغير مقاومته بتغير شدة الإضاءة . الم

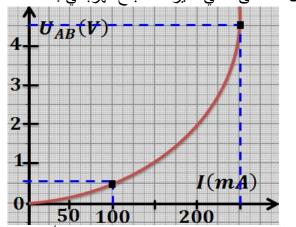
* المقومات المتحَّكم فيها بالتوتر ثنائي قطب غير نشيط ، مميزته غير خطية و تماثلية ، تتغير مقاومته مع تغير التوتر المطبق عليه.

تمرین 1:

مكنت الدراسة التجريبية من خط مميزة صمام ثنائى من السليسيوم حيث نجد:

باستغلال المنحنى ، I=f(U) ، عين :

 $oldsymbol{U}_{oldsymbol{c}}$ عتبة التوتر $oldsymbol{U}_{oldsymbol{c}}$.


2- كيف يتصرف الصمام عندما نطبق بين مربطيه توترا في المنحى المباشر . U=0.3 V

3- حدد شدة التيار التي تمر في الصمام عندما يكون

U = 1V

تمرین 2:

يمثل المنحني التالي مميزة مصباح كهربائي.

1- هل يمكن اعتبار سليك المصباح موصلا أوميا ؟ علل جو ابك

2- احسب مقاومة المصباح عند (100 mA; 0, 6 V) و مارن المقاومتين واستنتج ($(250 \, mA; 4, 5 \, V)$

3- كيف تتغير مقاومة المصباح عند ارتفاع التوتر بين

د هشام محجر

دېللالوگوگېلېگوگېلې

الجذع المشترك الفيزياء جميع الشعب

 $\frac{2}{2}$ الصفحة:

مميزات بعض ثنائيات (لقطب فير النشيطة Caractéristiques de quelques dipôles passifs

الكهرباء المحور الأول الوحدة 4

الجزء الثاني:

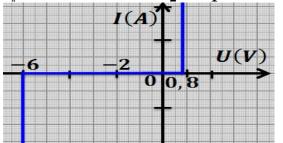
. هشام محجر

تمرین 5:

أعطت در اسة تجريبية لمقاومة ضوئية النتائج التالية:

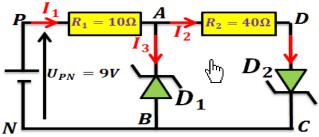
I(mA)	0,0	0,4	0,8	1,7	3 ,3	4,2
U(V)	0	1	2	4	8	10

 $oxed{I}$ مثل المميزة $oxed{U} = f(oldsymbol{I})$ للمقاومة الضوئية عند ظروف الإضاءة السابقة .


2- احسب مقاومتها في هذه الحالة.

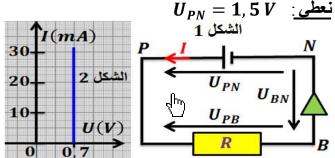
3- عند ارتفاع شدة الإضاءة تنخفض مقاومة المقاومة الضوئية، وعند اشتغالها في إضاءتين مختلفتين، نقرأ على جهاري الأمبيرمتر و القولطمتر القيم التالية:

. $E_2(12,5\,mA;4\,V)$ و $E_1(0,1\,mA;12\,V)$ احسب المقاومة في هاتين الحالتين ، وحدد في أي حالة تكون شدة الإضاءة مرتفعة .


تمرین 6:

نعتبر صمامین $oldsymbol{D}_1$ و $oldsymbol{D}_2$ مماثلین ممیزتهما کالتالي :

- $oldsymbol{U_Z}$ و $oldsymbol{U_S}$ 1 عين كلا من $oldsymbol{U_S}$
- 2- حدد طبيعة كل من الصمامين زينر.

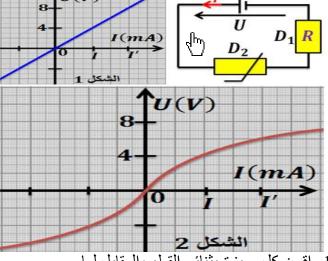

نركب الصمامين $m{D}_1$ و $m{D}_2$ في الدارة كما هو مبين في الشكل التالي :

- 3- حدد منحى التركيب الذي ركب به كل صمام .
 - 4- أوجد شدة التيار التي تمر في كل صمام .
- 5- كيف يتصرف الصمّام D_2 إذا تم عكس مربطي كل صمام في الدارة .

تمرين 3:

تمثل الدارُة الكهربائية الممثلة في الشكل (1) مولدا مركبا على التوالي مع صمام ثنائي مؤمثل مميزته ممثلة في الشكل (2) ، وموصلا أوميا مقاومته R .

1- اكتب بدلالة \boldsymbol{U}_{PN} و \boldsymbol{U}_{PN} ، تعبير شدة التيار الكهربائي المار في الدارة .


 $I={f 25} \; mA$ أعطى قياس شدة التيار في الدارة ${f 25}$

. الذي يشتغل تحته الصمام $m{U}_{BN}$ الذي يشتغل تحته الصمام

2-2- احسب R مقاومة الموصل الأومي.

تمرین 4:

نعتبر الدارة والمميزتين التاليتين (شكل 1 و 2):

1- اقرن كل مميزة بثنائي القطب المقابل لها .

يطبق المولد توترا U فيمر في الدارة تيارا كهربائيا شدته D_2 . احسب مقاومة كل من D_1 و D_2 . احسب مقاومة كل من D_1 فيمر في الدارة تيارا كهربائيا D_1 فيمر في الدارة تيارا كهربائيا

. D_2 هندته D_1 و من D_1 . احسب مقاومة كل من D_1 و الدين المناه الدين المناه الدين المناه المناه

ادا تستنتج ؟

لَ . هشام محجر