المتتاليات العددية 2ع ت

تعریف متتالیة :

الیکن n_0 عددا طبیعیا

 u_n عندما نربط كل عدد صحيح طبيعي $n_0 \leq n$ بعدد حقيقي وحيد (u_n) و $(u_n)_{n\geq n_0}$ نقول إننا عرفنا متتالية عددية نرمز لها بالرمز $(u_n)_{n\geq n_0}$ العدد u_{n_0} يسمى الحد الأول للمتتالية العدد العدد u_n يسمى الحد العام للمتتالية u_n العدد

تعريف:متتالية مكبورة – مصغورة – محدودة

- $u_n \leq n$ لکل $u_n \leq M$ یکافی M مکبورة بالعدد $(u_n)_{n \geq n_0}$
- $u_n \leq n$ لكل $u_n \geq m$ يكافئ m يكافئ مصغورة بالعدد $(u_n)_{n \geq n_0}$.
 - محدودة يكافئ ألها مكبورة ومصغورة $\left(u_n
 ight)_{n\geq n_0}$

 $n_0 \leq n$ لکل $\left| oldsymbol{u_n}
ight| \leq lpha$ حيث lpha حيث عدد عقيقي موجب

- $u_n \le n$ تزايدية يكافئ $u_{n+1} u_n \ge 0$ تزايدية يكافئ $(u_n)_{n \ge n}$
- $u_{n-1} u_n \le 0$ تناقصية يكافئ يكافئ يكافئ يكافئ يكافئ الكل الكل الكل الكل $(u_n)_{n \ge n}$
 - $u_{n+1}=u_n$ لکل $u_{n+1}=u_n$ نکل ابتة يکافئ $\left(u_n
 ight)_{n\geq n}$
 - . كل متتالية تزايدية تكون مصغورة بحدها الأول .
 - . كل متتالية تناقصية تكون مكبورة بحدها الأول .

المتتالىة الحساسة

نقول إن $(u_n)_{n\geq n_0}$ متتالية حسابية إذا وجد عدد حقيقي ، غير مرتبط. $n_0 \leq n$ لکل $u_{n+1} - u_n = r$ بالعدد n $u_n = u_{n_0} + (n - n_0)r$ لكل $u_n = u_{n_0} + (n - n_0)r$. صيغة الحد العام $n_0 \leq p$ و $n_0 \leq n$ لكل $u_n = u_p + (n-p)r$ العلاقة بين حدين $u_p + u_{p+1} + ... + u_n = \frac{(n-p+1)(u_p + u_n)}{2}$: equal to $\frac{1}{2}$. $p \le n$ حيث $[n_0; +\infty[$ من $\mathbf{p} \in \mathbf{n}$ حيث ما

نقول إن $(u_n)_{n\geq n_0}$ متتالية هندسية إذا وجد عدد حقيقي ، غير مرتبط . $u_{n+1}=q\;u_n$ بالعدد \mathbf{n} ، حيث ، عيث . $n_0 \le n$ لكل $u_n = u_{n_0} . q^{(n-n_0)}$: صيغة الحد العام $n_0 \leq p$ العلاقة بين حدين: $u_n = u_p.q^{(n-p)}$ الكل $u_n = u_p.q^{(n-p)}$ $u_p + u_{p+1} + \dots + u_n = u_p - \frac{1 - q^{n-p+1}}{1 - q}$: صيغة المجموع: . $oldsymbol{p} \leq oldsymbol{n}$ مع 1
eq p لكل عددين طبيعيين \mathbf{n} و \mathbf{p} من q
eq 1 حيث

نماية متتالية

نقول إن لهاية متتالية $\left(u_n\right)_{n\geq n_0}$ هي عدد حقيقي 1 إذا كان كل مجال. مركزه 1 يحتوي على جميع حدود المتتالية ابتداء من رتبة معينة . نقول إن نماية $\left(u_n
ight)_{n\geq n_0}$ هي $\left(+\infty
ight)$ إذا كان كل مجال من النوع . يحتوي على جميع حدود المتتالية ابتداء من رتبة معينة $[a:+\infty[$

نقول إن متتالية متقاربة إذا كانت تقبل هاية منتهية .

كل متتالية غير متقاربة تسمى متتالية متباعدة .

.مصاديق تقارب متتالية :

. كل متتالية تزايدية ومكبورة تكون متقاربة .

. كل متتالية تناقصية و مصغورة تكون متقاربة .

 n_0 يذا كان : $v_n \prec u_n \prec w_n$ ابتداء من عدد طبيعي .

 $\lim v_n = \lim w_n = l \in R \quad g$

 $\lim u_n = l$ فإن $(u_n)_{n \in I}$ تكون متقاربة و

 $\lim v_n = 0$ و n_0 ابتداء من عدد طبیعی $|u_n - l| \prec v_n$ و ا

. $\lim u_n = l$ و متتالية متقاربة و $\left(u_n\right)_{n \in I}$

 $\lim v_n = -\infty$ و n_0 و ابتداء من عدد طبیعی $u_n \prec v_n$ و . إذا

 $\lim u_n = -\infty$ فإن : متتالية متباعدة و $\left(u_n\right)_{n\in I}$

 $\lim v_n = +\infty$ و ابتداء من عدد طبیعی n_0 ابتداء من عدد $v_n \prec u_n$: إذا كان $\lim u_n = +\infty$ فإن $(u_n)_{n \in I}$ متتالية متباعدة و

. $\lim a^n = 0$ فإن -1 < a < 1.

. $\lim a^n = 1$: فإن a = 1

. $\lim a^n = +\infty$: فإن a > 1

. إذا كان $a \leq -1$ فإن : المتتالية $a \leq -1$ ليست لها لهاية .

$:r\in extstyle Q^*$ عيث n^r : الحام الحد العام

 $\lim n^r = +\infty$ فإن r > 0.

 $\lim n^r = 0$ فإن r < 0: إذا كان.

لتكن f دالة متصلة على مجال f بحيث : $f(I) \subset I$ عنصوا من fn لكل $u_{n+1} = f(u_n)$ وبالعلاقة u_0 لكل الكل الكل الكتبالية المعرفة بحدها الأول . f(l)=l افت المايتها المحقق أن متقاربة فإن أمايتها المحقق أن المحتفارية فإن متقاربة فإن أمايتها المحتفقة ا

 $v_n = f(u_n)$ نماية المتنالية

إذا كانت $ig(u_nig)$ متتالية متقاربة نحو عدد 1 و f دالة متصلة في 1f(l) فإن المتنالية $ig(v_nig)$ تكون متقاربة نحو