بين أن
$$(\forall n \in \mathbb{N})$$
 $0 < U_n - 2 \le \left(\frac{1}{4}\right)^n$ ثم حدد نهاية .4 المتتالية $(U_n)_{n \in \mathbb{N}}$

المريك والمالا والأم

$$\begin{cases} U_{n+1} = U_n + \frac{1 + U_n}{1 + 2U_n} \\ U_0 = 1 \end{cases}$$
 منتالية عددية معرفة بما يلي:
$$(U_n)_{n \in \mathbb{N}}$$

$$ig(orall n \in \mathbb{N} ig)$$
 $U_n > 0$ بين أن -1 U_n

$$\forall n \in \mathbb{N}$$
 $U_{n+1} \ge U_n + \frac{1}{2}$ بين أن -2

 $\lim_{n \to +\infty} U_n$ ثم حدد $\forall n \in \mathbb{N}$ $U_n \ge 1 + \frac{n}{2}$ نبث أن -

المعريكي رقام 5

$$\begin{cases} u_0 = -3 \\ u_{n+1} = \frac{U_n^2 - 2}{U_n + 1} :$$
لتكن $(U_n)_{n \in \mathbb{N}}$ لتكن

$$\mathbb{N}$$
 بين أن $u_n \le -2$ لكل n من \blacktriangleleft

$$\left(U_{n}
ight)_{n\in\mathbb{N}}$$
 أدرس رتابة المتتالية \prec

$$\mathbb{N}$$
 بين أن $u_{n+1} \leq u_n - \frac{1}{2}$ لكل $u_n \ll$

$$\mathbb N$$
 من $u_n \leq -rac{1}{2}n-3$ الكل $u_n \leq -rac{1}{2}n-3$

$$(U_n)_{n\in\mathbb{N}}$$
 حدد نهاية المتتالية \prec

الموريكي رقار

$$\begin{cases} U_0 = 2 \\ U_{n+1} = \frac{1}{5} (U_n - 4n - 1) \end{cases} :$$
 نعتبر المتتالية
$$(U_n)_{n \in \mathbb{N}} \quad \text{ (a) } \quad U_n = U_n + n - 1$$
 و نضع
$$q = \frac{1}{5} \quad \text{ (a) } \quad V_n = U_n + n - 1$$
 لكل $V_n = U_n + n - 1$ و نضع $V_n = U_n + n - 1$ و نضع $V_n = U_n + n - 1$ و نصب $V_n = U_n + n - 1$ و نصب $V_n = U_n + n - 1$ و نصب
$$V_n = U_n + U_n + U_n$$
 و نصب
$$T_n = V_0 + V_1 + \dots + V_n$$
 و نصب
$$S_n = U_0 + U_1 + \dots + U_n$$
 و نصب
$$S_n = T_n - \frac{(n-2)(n+1)}{2} \quad \text{ (a) } \quad V_n = \frac{1}{4} \left(5 - \frac{1}{5^n} \right)$$
 بين أن
$$V_n = \frac{1}{4} \left(5 - \frac{1}{5^n} \right)$$

الماريكي رقم 1

$$f\left(x\right)=rac{5x+2}{x+3}$$
: نعتبر الدالة العددية f المعرفة بما يلي $I=[2,3]$ و نضع $f\left(I\right)\subseteq I$ بين أن $f\left(I\right)$

$$\begin{cases} U_{n+1} = f(U_n) \\ U_0 = \frac{5}{2} \end{cases}$$
 بمتتالية بحيث بما يلي:
$$(U_n)_{n \in \mathbb{N}} -2$$

$$(\forall n \in \mathbb{N})$$
 2 $\leq U_n \leq 3$ أ- بين أن

$$(U_n)_{n\in\mathbb{N}}$$
 أدرس رتابة المتتالية -ب

 $\lim_{n\to+\infty}U_n$ متقاربة و حدد $\left(U_n\right)_{n\in\mathbb{N}}$ أمتنج أن

كتمويك وقتر 2

$$f(x) = \frac{x+1}{x^2+3}$$
 انكن f دالة معرفة ب

$$f\left(I
ight)\subset I$$
 أدرس رتابة f على $I=\left\lceil 0,1
ight
ceil$ و بين أن $I=\left\lceil 0,1
ight
ceil$

$$I$$
 في α في أن المعادلة $f(x)=x$ في أن أن المعادلة

$$V_{n+1} = f(V_n)$$
 و $V_0 = \frac{1}{2}$ عنتالية بحيث: -2

$$\mathbb{N}$$
 من n لكل $0 \leq V_n \leq 1$ بين أن V_1 ميں –أ

بين أن
$$\left(V_n\right)_{n\in\mathbb{N}}$$
 بين أن بين أب

ج- استنتج أن $(V_n)_{n\in\mathbb{N}}$ متقاربة وحدد نهايتها

كتهويك وقام 3

$$f(x) = \frac{9x}{x^3 + 6}$$
 دالة معرفة على $I = \left[0, \sqrt[3]{3}\right]$ دالة معرفة على f

$$f(I) = I$$
 أدرس تغيرات الدالة f وبين أن -1

$$U_{n+1}=f\left(U_{n}
ight)$$
 و $U_{0}=rac{1}{2}:$ متتالية بحيث و $\left(U_{n}
ight)_{n\in\mathbb{N}}-2$

$$(\forall n \in \mathbb{N})$$
 $0 < U_n < \sqrt[3]{3}$ اً البين أن

بين أن
$$(U_n)_{n\in\mathbb{N}}$$
 تزايدية -ب

ج- استنتج أن $\left(U_{n}\right)_{n\in\mathbb{N}}$ متقاربة و حدد نهايتها

المواليك رقام 4

التكن $(U_n)_{n\in\mathbb{N}}$ متتالية عددية معرفة بما يلي

$$\begin{cases} U_{n+1} = 2 + \frac{1}{U_n} - \frac{2}{U_n^2} \\ U_0 = 3 \end{cases}$$

$$(\forall n \in \mathbb{N})$$
 $U_n \ge 2$ بين أن .1

$$2 \le U_n \le 3$$
 أدرس رتابة $(U_n)_{n \in \mathbb{N}}$ و استنتج أن 2

$$(\forall n \in \mathbb{N})$$
 $0 < U_{n+1} - 2 \le \frac{1}{4}(U_n - 2)$ يين أن .3