

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 2 علوم فيزياء + 2 ع. ح. أ

سلسلة رقم

تمارين: الدوال الأسية

<u>.01</u>

$$\mathbf{c} = \sqrt{\mathbf{e}^{2\mathrm{x}} + 2\mathbf{e}^{\mathrm{x}} + 1}$$
 و $\mathbf{b} = \frac{\left(\mathbf{e}^{5\mathrm{x}}\right)^4 \times \mathbf{e}^{-8\mathrm{x}}}{\mathbf{e}^{3\mathrm{x}}}$ و $\mathbf{a} = \mathbf{e}^{3\ln(\mathrm{x})}$ بسط التعابير التالية:

. 02

$$(\mathrm{e}^{\mathrm{x}}-2)(\mathrm{e}^{2\mathrm{x}}+6)=0$$
 و $\mathrm{e}^{3\mathrm{x}}+3=0$ و $\mathrm{e}^{7\mathrm{x}}-2=0$ حل في $\mathbb R$ المعادلات التالية:

.03

$$\mathrm{e}^{\mathrm{x}}\left(\mathrm{e}^{\mathrm{x}}-1
ight)$$
 حل في \mathbb{R} المتراجحات التالية: $\mathrm{e}^{3\mathrm{x}+1}>\mathrm{e}^{7\mathrm{x}+2}$ و

. 04

حدد مجموعة تعريف الدالة f في الحالات التالية:

$$f(x) = \frac{3}{e^x \times \ln(x)}$$
 $f(x) = \frac{3e^x}{e^x - 2}$ $f(x) = \frac{e^x + 5}{e^x}$ $f(x) = (4 - e^x) \ln(e^x - 3)$ $f(x) = 2e^x + 1$

<u>. 05</u>

أحسب: f '(x) في الحالات التالية.

$$f(x) = \sqrt{e^{2x} - e^{x}}$$
 $f(x) = e^{\frac{3x-5}{x-2}}$ $f(x) = \frac{e^{x}+5}{e^{x}}$ $f(x) = \ln(e^{x}-2)$ $f(x) = 7x^{4} - e^{2x}$

<u>. 06</u>

حسب النهايات التالية:

$$\lim_{x \to 1} \frac{e^{3x+2} - e^5}{x-1} \ni \lim_{x \to +\infty} \frac{2e^x - 1}{5e^x - 3} \ni \lim_{x \to -\infty} \frac{2e^x - 1}{5e^x - 3} \ni \lim_{x \to -\infty} x^3 \times e^x \ni \lim_{x \to +\infty} 3x - 2 - e^x \ni \lim_{x \to +\infty} xe^{-2x} \ni \lim_{x \to -\infty} \frac{3x}{x+2} e^{-2x}$$

 $f(x) = 3x^2 + e^x \times (e^x + 2)^4$ و $f(x) = \frac{e^{2x}}{e^{2x} - 5}$ و $f(x) = \frac{3}{3x + 2} + e^3x$ و $f(x) = e^x - 2e^{3x}$ عدد الدوال الأصلية للدالة $f(x) = 3x^2 + e^x \times (e^x + 2)^4$

.07 باك 2015 الدورة العادية

الدالة العددية للمتغير الحقيقي x المعرفة على $g(x)=e^x-2x$ ب $g(x)=e^x-2x$ الدالة العددية للمتغير الحقيقي $g(x)=e^x-2x$

. $[\ln 2,+\infty[$ على g'(x) و تزايدية على $[\ln 2,+\infty[$ و تزايدية على g'(x) . أحسب و المنابع أن و المنابع أن و المنابع أن ا

ي نحقق أن $g(\ln 2) = 2(1 - \ln 2)$ ثم حدد إشارة $g(\ln 2) = 2(1 - \ln 2)$ ثم حدد إشارة

<u>lundi 25 janvier 2016</u> 25/01/2016 09:53

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 2 علوم فيزياء + 2 ع. ح. أ

سلسلة رقم

تمارين: الدوال الأسية

استنتج أن g(x)>0 لكل x من g(x)>0 كال 0.5

. $f(x) = \frac{x}{e^x - 2x}$ بما يلي \mathbb{R} بما المعرفة على المعرفة على الدالة العددية

. (1 cm الوحدة) ($\mathbf{O}.; \mathbf{i}; \mathbf{j}$) منحنى الدالة \mathbf{f} في معلم متعامد ممنظم ($\mathcal{C}_{\!{}_f}$) الوحدة

.....01

(المنا) (\mathbb{R}^* نكل x من $e^x - 2x = x \left(\frac{e^x}{x} - 2 \right)$) $\lim_{x \to -\infty} f(x) = -\frac{1}{2}$ و $\lim_{x \to +\infty} f(x) = 0$: $\lim_{x \to +\infty} f(x) = 0$

بے أول هندسيا كل نتيجة من النتيجتين السابقتين) أول هندسيا كل نتيجة من النتيجتين السابقتين) .

...02

(ن 0.75)..... \mathbb{R}^* عن \mathbf{x} عن $\mathbf{f}'(\mathbf{x}) = \frac{(1-\mathbf{x})e^{\mathbf{x}}}{(e^{\mathbf{x}}-2\mathbf{x})^2}$: $\frac{1}{2}$

ادرس إشارة f'(x) على $\mathbb R$ ثم أعط جدول تغيرات الدالة f على $\mathbb R$ (0.75 ن)

(ن 0.25)......... بين أن y=x أصل المعلم . المماس للمنحنى y=x أصل المعلم . بين أن y=x

المستقيم (\mathcal{C}_f) نقطتي (\mathcal{C}_f) و المنحنى (\mathcal{C}_f) و المنحنى (\mathcal{C}_f) و المنحنى (\mathcal{C}_f) نقطتي انعطاف (\mathcal{C}_f) نقطتي انعطاف (\mathcal{C}_f) نقطتي انعطاف

أفصول إحداهما ينتمي إلى المجال]0,1[و أفصول الأخرى أكبر من $\frac{3}{2}$ (1 ن)

...04

لتكن ، ب (\mathcal{C}_f) مساحة حيز المستوى المحصور بين المنحنى ((\mathcal{C}_f)) و محور الأفاصيل و المستقيمين اللذين ح

 $(\ \dot{\cup} \ 0.5 \)$. $1 - \frac{2}{e} \le A(E) \le \frac{1}{e-2} :$ بين أن x = 1 و x = 0 معادلتاهما معادلتاهما

. h(x) = f(x) بما يلي : $[-\infty, 0]$ بما يلي المعرفة على المعرفة على المجال الدالة العددية المعرفة على المجال

. بين أن : الدالة h تقبل دالة عكسية h^{-1} معرفة على المجال J يتم تحديده .

. \mathbf{h}^{-1} الممثل للدالة ($\mathcal{C}_{\mathbf{h}^{-1}}$) المنحنى ($\mathcal{C}_{\mathbf{h}^{-1}}$) الممثل للدالة ($\mathbf{O}.; \vec{\mathbf{i}}; \vec{\mathbf{j}}$) الممثل للدالة

. $\mathbb N$ لكل $\mathbf u_{\mathrm{n+1}}=\mathbf h(\mathbf u_{\mathrm{n}})$ و $\mathbf u_0=2$ لكل $\mathbf u_{\mathrm{n}}$ لكل $\mathbf u_{\mathrm{n+1}}=\mathbf u_{\mathrm{n}}$. $\mathbf U_{\mathrm{n}}$

ين بالترجع أن : $\mathbf{u}_{\mathrm{n}} \leq \mathbf{0}$ لكل \mathbf{n} من $\mathbf{0}$ $\mathbf{0.5}$

بين أن : المتتالية $\left(u_{n}\right)$ تزايدية $\left(u_{n}\right)$ ملاحظة ، مبيانيا ، أن x \geq x لكل x من المجال $\left(u_{n}\right)$

استنتج أن : المتتالية (u_n) متقاربة و حدد نهايتها (0.75 ن 0.75

<u>Lundi 25 janvier 2016</u> 25/01/2016 09:53

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 2 علوم فيزياء + 2 ع. ح. أ

فحة تمارين: الدوال الأسية سلسلة رقم

<u>. 08</u>

I

. $g(x) = (x+1)^2 e^{-x} - x$: بما يلي $[0;+\infty[$ المعرفة على المع

 $\lim_{x\to +\infty} g(x) = -\infty$: بين أن $\lim_{x\to +\infty} \frac{e^x}{x^2} = +\infty$) $\lim_{x\to +\infty} \frac{e^x}{x^2} = +\infty$: المين أن $\lim_{x\to +\infty} \frac{e^x}{x^2} = +\infty$

...**.02**

. $\forall x \in \left]0;+\infty\right[\;\; ; \;\; e^{-x} \leq 1:$ بين أن $g'(x)=-x^2e^{-x}+e^{-x}-1:$. $g'(x)=-x^2e^{-x}+e^{-x}-1:$

. $[0;+\infty[$ على g'(x) على g'(x) على g'(x) على g'(x) على g'(x) على g'(x)

. $f(x) = (x+1)^2 e^{-x}$ بندية المعرفة على x المعرفة على الدالة العددية للمتغير الحقيقي والمعرفة على الدالة العددية المعرفة المعرفة على x

. ($2~{
m cm}$ الوحدة $(\mathcal{C}_{_f})$ منحنى الدالة f في معلم متعامد ممنظم ($(\mathcal{C}_{_f})$ منحنى الدالة $(\mathcal{C}_{_f})$

 $\lim_{x \to +\infty} f(x)$. النتيجة هندسيا يا $\lim_{x \to -\infty} f(x)$. النتيجة

بین أن: $\infty + = \lim_{x \to -\infty} \frac{f(x)}{x}$ و أول النتیجة هندسیا.

. $\left[1; \frac{3}{2}\right]$ على \mathbb{R} . \mathbb{R} على \mathbb{R} . \mathbb{R} على \mathbb{R} على \mathbb{R} . \mathbb{R} على \mathbb{R} . \mathbb{R} استنتج رتابة \mathbf{r} على \mathbf{r}

 $f(\alpha) = \alpha$ حيث α عدد حقيقي وحيد α من المجال α حيث عدد عدد حقيقي وحيد α

. حدد تقاطع المنحنى $(\mathcal{C}_{_{\! f}})$ مع المحورين $\mathbf{04}$

. $(\Delta): y=x$ موازي للمستقيم (Δ) الذي معادلته (C_f) ل (C_f) الذي معادلته (Δ)

 $(e^{-1} \approx 0,4 \ 7 \approx ,2)$ e ناخذ (Δ) و المستقيم (\mathcal{C}_f) و المستقيم (\mathcal{C}_f) الخذ

. يتم تحدده $\mathcal{C}_{g^{-1}}$ بين أن g قصور f على g تقابل من g تقابل من g إلى g يتم تحدده . g أنشئ $\mathcal{C}_{g^{-1}}$ منحنى الدالة g في نفس المعلم .

. $\mathbb N$ المعرفة بما يلي : $u_{n+1}=f\left(u_n\right)$ و $u_0=rac{3}{2}$. المعرفة بما يلي : $u_{n+1}=f\left(u_n\right)$ ككل $u_{n+1}=f\left(u_n\right)$ من

. $\forall n \in \mathbb{N} \ ; \ 1 \le u_n \le \frac{3}{2} \ :$ أن بين بالترجع أن $u_n \le \frac{3}{2} = 0$

. $\forall n \in \mathbb{N} \; \; ; \; \left|u_{_{n+1}}-\alpha\right| \leq \frac{1}{2}\left|u_{_{n}}-\alpha\right| \; : \;$ فقبل النتيجة التالية : 0

. $\left(u_{n}\right)$ بين ن : $\forall n\in\mathbb{N}$; $\left|u_{n+1}-\alpha\right|\leq\left(\frac{1}{2}\right)^{n+1}$: ين ن ن

lundi 25 janvier 2016 ________25|01|2016 09:53